首页|小时间尺度网络数据传输故障识别数学建模

小时间尺度网络数据传输故障识别数学建模

扫码查看
在网络传输过程中,数据容量较大,受外界因素影响极易导致传输中断,从而出现信息缺失与传输误码。为解决中断故障造成的数据传输误差和缺失问题,提高网络利用率,保证网络的正常通信。因此,提出一种小时间尺度网络数据传输故障识别数学建模。建立传输的容错控制条件,分析小时间尺度网络的混沌状态和流量序列,描述网络中多层前向特征,调整各个尺度下权重和阈值。设定容错策略,对小时间尺度网络多项训练,得到网络的中断故障诊断。针对性预测缺失数据,通过函数计算预测误差及序列权重等参数,获得故障隶属度层和规则集合层间调节权值,完成中断故障容错识别。实验证明,所提方法提高了网络传输召回率,增加网络资源利用率,减少网络在中断故障下的传输误码率。
Mathematical Modeling for Fault Identification in Small Time Scale Network Data Transmission
In the process of network transmission,the data capacity is large,which is easily interrupted by external factors,resulting in information loss and transmission errors.To solve the problem of data transmission errors and missing caused by interruption faults,improve network utilization,and ensure normal communication of the network.Therefore,a mathematical model for identifying faults in small-scale network data transmission is proposed.Establish fault-tolerant control conditions for transmission,analyze the chaotic state and traffic sequence of small time scale net-works,describe multi-layer forward features in the network,and adjust weights and thresholds at each scale.Set a fault-tolerant strategy,train multiple small time scale networks,and obtain network interruption fault diagnosis.Targe-ted prediction of missing data is achieved by calculating parameters such as prediction error and sequence weights through functions,and adjusting weights between the fault membership level and rule set level to complete fault toler-ance identification for interruptions.Experiments have shown that the proposed method improves the network transmis-sion recall rate,increases network resource utilization,and reduces the transmission error rate of the network under in-terruption faults.

Small time scale networkNetwork flowChaos theoryInterrupt faultFault tolerance identification

肖金桐、田亮、王艳君

展开 >

河北水利电力学院,河北 沧州 061000

河北师范大学计算机与网络空间安全学院,河北 石家庄 050024

供应链大数据分析与数据安全河北省工程研究中心,河北 石家庄 050024

河北省数字教育协同创新中心,河北 石家庄 050024

展开 >

小时间尺度网络 网络流量 混沌理论 中断故障 容错识别

2020年河北省教育厅教改项目2021年河北师范大学科技类科研基金项目

2020GJXGK012L2021B39

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(6)