首页|一种无监督双层DBN的轴承故障智能诊断方法

一种无监督双层DBN的轴承故障智能诊断方法

扫码查看
大型滚动轴承设备的运行环境复杂多变,以往利用模式识别建立的诊断方法,通常难以有效解决数据含有噪声,不完备、无标签等问题。因此提出一种无监督双层深度信念网络(DBN)的滚动轴承故障智能分类与诊断方法。方法利用DBN的逐层贪婪学习来挖掘与故障相关的特征信息并输入分类器。通过自适应模糊C均值聚类算法,识别未知数据中的异常值。若异常值密度聚集度低,则判定其为噪声,并以此消除分类过程噪声干扰;若异常值密度聚集度高,则判定其为一个新类别,并合并到故障知识库中。之后再将贝叶斯分类器的方法应用于二级DBN网络中,使故障损伤等级实现无监督学习。利用西储大学滚动轴承实验平台数据对此套方法进行验证,结论表明在有噪声和不完备数据建模情况下,可以很好地完成故障类型与损伤等级的准确划分,具有一定的智能性。
An Unsupervised Double-Layer DBN Based Intelligent Diagnosis Method for Bearing Faults
The operating environment of large rolling bearing equipment is complex and variable,and previous di-agnostic methods established using pattern recognition are usually difficult to effectively solve problems such as data containing noise,incompleteness and lack of labels.Therefore,an unsupervised double-layer deep belief network(DBN)method for intelligent classification and diagnosis of rolling bearing faults is proposed.The method makes use of layer-by-layer greedy learning of DBN to mine the feature information related to faults and input to the classifier.Outliers in the unknown data are identified by an adaptive fuzzy C-mean clustering algorithm.If the density of outliers is low,they are judged to be noisy and this is used to eliminate noise interference in the classification process;If the density of outliers is high,they are judged to be a new class and are merged into the fault knowledge base.The Bayes-ian classifier method is then applied to the secondary DBN network to enable unsupervised learning of fault damage classes.This method is validated using data from the rolling bearing experimental platform at Western Reserve Univer-sity,and the conclusions show that the accurate classification of fault types and damage classes can be accomplished well with some intelligence in the presence of noise and incomplete data.

Deep belief networkRolling bearingIncomplete dataBayesian classifier

刘洋、李永亭、齐咏生、刘利强

展开 >

内蒙古工业大学电力学院,内蒙古 呼和浩特 010080

内蒙古自治区机电控制重点实验室,内蒙古 呼和浩特 010051

深度置信网络 滚动轴承 不完备数据 贝叶斯分类器

国家自然科学基金内蒙古高等学校科学研究项目内蒙古高等学校科学研究项目内蒙古自然科学基金项目内蒙古科技计划项目

61763037NJZY21305NJZY223652021MS060182021GG164

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(6)