首页|基于改进蛇优化算法的无人机三维路径规划

基于改进蛇优化算法的无人机三维路径规划

扫码查看
针对复杂飞行环境下的无人机三维路径规划问题,提出了一种基于改进蛇优化算法的无人机路径规划算法。首先,按照一定约束制定成本函数,将路径规划问题转化为优化问题。然后,将路径坐标作为变量,并求解由四个成本的加权和组成的总成本目标函数。最后,通过改进的蛇优化算法对路径适应度进行选择,得到最优路径。仿真结果表明,所提改进的蛇优化算法通过限制产卵阶段的搜索范围,减少了运算量,降低了随机性,使算法更新路径节点过程加快;混沌优化算法的引入,使寻优过程能够更快向全局最优搜索,加快收敛速度。与基础的蛇优化算法和改进的粒子群算法相比,所提算法在迭代次数、路径长度、路径平滑等方面有着明显的优势。
Three-Dimensional Path Planning for UAV Based on Improved Snake Optimizer Algorithm
An unmannedaerial vehicle(UAV)path planning algorithm based on an improved snake optimizer al-gorithm is proposed for the UAV 3D path planning problem in complex flight environments.First,the path planning problem was transformed into an optimization problem by formulating a cost function according to certain constraints.Then,the path coordinates were taken as variables,and the total cost consisting of the weighted sum of four costs was taken as the objective function.Finally,the optimal path was obtained by the improved snake optimization algorithm to select the path adaptation.The simulation results show that the improved snake optimizer algorithm proposed in this paper reduces the number of operations and the randomness by limiting the search range in the spawning phase,which makes the algorithm update the path node process faster;the introduction of chaos optimization algorithm enables the search process to search faster toward the global optimum and speeds up the convergence speed.Compared with the basic snake optimizer algorithm and the improved particle swarm algorithm,this algorithm has obvious advantages in terms of iteration number,path length and path smoothing.

Snake optimizer algorithmThree-dimensional path planningUAVChaos optimizer algorithm

葛超、马朋贺、王蕾、苏皓

展开 >

华北理工大学电气工程学院,河北 唐山 063210

华北理工大学唐山市半导体集成电路重点实验室,河北 唐山 063000

唐山学院智能与信息工程学院,河北 唐山 063010

蛇优化算法 三维路径规划 无人机 混沌优化算法

国家自然科学基金河北省自然科学基金

61503120F2021209006

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(7)
  • 9