首页|多指标集成学习的模拟手控交会对接人误识别

多指标集成学习的模拟手控交会对接人误识别

扫码查看
为了识别载人航天任务中手控交会对接人误行为,以《坎巴拉太空计划》为仿真模型构建实验环境,基于机器学习算法构建了一种人误行为分析与识别的方法。通过模拟采集手控交会对接任务过程中操作员的6 项生理指标,对各项指标进行机器学习建模分析,筛选出更适用于识别的指标及其最适合的学习器,并将各学习器通过Stacking集成算法进行集成。模型的仿真结果表明,测试集预测精度达到96。36%,验证了上述方法的有效性,为手控交会对接中的人误行为识别分析提供有效的补充与参考。
Human Error Identification of Simulated Manual Rendezvous and Docking Based on Multi-Indicators Ensemble Learning
In order to identify the human errors of rendezvous and docking in manned space missions,this paper build an experimental environment using the Kerbal Space Program as a simulation model,and a method for human error behaviors analysis and recognition is constructed based on machine learning algorithms.By simulating the col-lection of six physiological indicators of the operator during the rendezvous and docking task,machine learning mod-eling analysis is performed for each indicator to filter out the indicators that are more applicable for identification and the most suitable learners,and the learners are integrated through stacking ensemble algorithm.The simulation results of the model suggest that the prediction accuracy of the test set reaches 96.36%,which verifies the effectiveness of the method and provides an effective supplement and reference for the analysis of human error behavior identification in rendezvous and docking.

Ensemble learningRendezvous and dockingMachine learningHuman errorPattern recognition

袁成炜、张力、方小勇、刘建桥

展开 >

南华大学计算机学院/软件学院,湖南 衡阳 421200

湖南工学院人因与安全工程研究院,湖南 衡阳 421200

集成学习 交会对接 机器学习 人因失误 模式识别

装备预研国防科技重点实验室基金湖南省自然科学基金项目湖南省教育厅优秀青年基金湖南工学院科研基金项目

6142222020405712015JJ602821B0798HQ21021

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(7)
  • 9