首页|大数据下锂电池健康状态运维挖掘模型仿真

大数据下锂电池健康状态运维挖掘模型仿真

扫码查看
对锂电池健康状态的运维挖掘,可以实时掌控锂电池的当前健康状态,保障用电设备正常使用。提出大数据下锂电池健康状态运维挖掘模型,分析模型整体架构,采用CNN-LSTM神经网络模型进行锂电池健康状态估算。首先选取十个备选锂电池健康特征因子,然后进行灰色关联分析法和主成分分析,提取出五个健康特征因子,分别为循环次数、放电阶段平均温度、充电阶段平均温度、放电总时间、和恒定电流放电时间;然后利用卷积神经网络提取健康特征因子的局部特征,长短期神经网络挖掘时间序列特征因子,构建CNN-LSTM组合神经网络模型;最后利用NASA锂电池数据集进行仿真,预测锂电池健康状态。实验结果表明,所提的组合网络模型具有较高的预测精度,相较于LSTM和BP 单一网络模型,平均绝对误差降低 37%和 62%,均方根误差降低了17%和39%。
Simulation of Lithium Battery Health State Operation and Maintenance Mining Model under Big Data
The operation and maintenance mining of lithium battery health status can control the current health status of lithium battery in real time and ensure the normal use of power-using equipment.We proposed an O&M mining model for lithium battery health status under big data,analyzed the overall architecture of the model,and used CNN-LSTM neural network model for lithium battery health status estimation.Firstly,ten alternative lithium battery health feature factors were selected,and then gray correlation analysis and principal component analysis were per-formed to extract five health feature factors,which are cycle number,average temperature in discharge phase,average temperature in charge phase,total discharge time,and constant current discharge time;Then convolutional neural net-work was used to extract local features of health feature factors,and long and short-term neural network was used to mine time series feature The CNN-LSTM combined neural network model was constructed by using convolutional neu-ral network to extract local features of health feature factors and long and short term neural network to mine time se-ries feature factors.The experimental results show that the proposed combined network model has high prediction ac-curacy,and the average absolute error is reduced by 37%and 62%,and the root mean square error is reduced by 17%and 39%compared with the LSTM and BP single network models.

Lithium batteryCNN-lstmBigdata

王红林、张伽浩

展开 >

南京信息工程大学,江苏 南京 210044

锂电池 神经网络 大数据

国家自然科学基金委员会青年项目

62101274

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(7)
  • 9