首页|基于Mask-RCNN的图像篡改检测模型

基于Mask-RCNN的图像篡改检测模型

扫码查看
随着图像篡改工具的多样化发展,伪造图片持续增多,并且不再局限于拼接、复制-移动、移除等某一具体的技术,然而当前提出的多数方法面对包含多种篡改类型图片的情况下,检测效果较差。因此提出了一种双通道Mask-RCNN的图像篡改检测模型。通过噪声通道挖掘图像的噪声分布等内部统计特征,通过彩色图像通道提取图像对比度差异、篡改伪影以及边界等表层特征,同时利用自适应双重注意力模块自适应地融合两个通道的特征,以准确定位篡改区域,实现像素级分割。在主流标准数据集上的实验结果表明,所提模型相较于当前先进模型具有更优的检测性能,是一种更加通用且精确的图像篡改检测模型。
Dual-Channel Mask-RCNN Model for Image Forgery Detection
With the diversified development of image tampering tools,forged images continue to increase,and are no longer limited to a specific technology such as splicing,copy move,and removal.However,most of the methods currently proposed have poor detection results when they contain multiple types of tampered images.We proposed a dual-channel Mask-RCNN image tamper detection model.The internal statistical features such as noise distribution of the image are extracted through the noise channel,and the surface features such as image contrast differences,tam-pering artifacts and boundaries are captured through the RGB channel.At the same time,the adaptive DA attention module is used to adaptively fuse the features of the two channels to accurately locate the tampered area and achieve pixel-level segmentation.Experimental results on mainstream standard datasets show that the proposed model has bet-ter detection performance than the current advanced model,and is a more general and accurate image forgery detection model.

Image forgery detectionDual-channel networkAttention mechanismNoise information

李士杰、田秀霞

展开 >

上海电力大学计算机科学与技术学院,上海 201306

图像篡改检测 双通道网络 注意力机制 噪声信息

国家自然科学基金面上项目国网甘肃省电力公司电力科学研究院资助项目上海市大数据管理系统工程研究中心开放课题CCF-华为胡杨林基金-数据库专项项目

61772327H2019-275H2020-216CCF-HuaweiDB202209

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(7)
  • 1