首页|基于改进SiamFC的实时人脸跟踪算法

基于改进SiamFC的实时人脸跟踪算法

扫码查看
基于现有的人脸跟踪网络存在参数量大、算力高、难以部署到嵌入式平台,无法满足移动设备实时性需求的问题,以SiamFC为基准网络,提出一种基于Two-Way Dense Layer模块改进后的Dense_Block模块。模块在提取特征时具有特征分流、扩大感受野、轻量化网络等优势;为保证人脸跟踪精度且维持实时的在线人脸跟踪速度,通过人脸级联定位搜索策略,先采用浅层的搜索特征和人脸模板特征进行目标人脸初定位,接着对特征响应最大的区域作为深度特征进行人脸重定位,之后,通过NEON指令集优化、知识蒸馏、模型剪枝等方法进一步为人脸跟踪算法加速。实验表明,改进后的SiamFC在部署到RK3288 开发板上时,在Accurate、Overlap基本保持不变的情况下,跟踪速度是原SiamFC算法的 7。7 倍。
A Real-Time Face-Tracking Algorithm Based on Improved SiamFC
Aiming at the problems of large parameter count,high computing power,difficulty in deploying to em-bedded platforms,and inability to meet the real-time requirements of mobile devices in existing face tracking net-works,a DenseBlock module based on the Two Way Dense Layer module improvement is proposed using SiamFC as the benchmark network.This module has the advantages of feature splitting,expanding the receptive field,and light-weight network in extracting features.In order to ensure the accuracy of face tracking and maintain the real-time on-line face tracking speed,through the face cascading location search strategy,the shallow search features and face tem-plate features are first used for the initial target face location,and then the region with the largest feature response is used as the depth feature for face relocation.NEON instruction set optimization,knowledge distillation,model pruning and other methods are used to further accelerate the face tracking algorithm.The experiment shows that when the im-proved SiamFC is deployed on the RK3288 development board,the tracking speed is 7.7 times of that of the original SiamFC algorithm under the condition that Accurate and Overlap keep basically unchanged.

Face trackingSiamFC networkFace cascade locationModel pruningKnowledge distillation

汪威、郭明镇、孙收余、罗子江

展开 >

贵州财经大学信息学院,贵州 贵阳 550025

人脸跟踪 孪生网络 人脸级联定位 模型剪枝 知识蒸馏

贵州省自然科学基金项目贵州财经大学创新探索及学术新苗项目

[2020]1Y1202022XSXMB03

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(7)
  • 1