首页|模糊集合下多传感器信息融合算法仿真

模糊集合下多传感器信息融合算法仿真

扫码查看
多传感器数据融合通常涉及大量数据,受到噪声、不完整性、不准确性等因素的影响,导致融合结果的不确定性增加。为此,提出一种基于模糊集合的多传感器信息融合算法。利用局部保持投影(Locality Preserving Projection,LPP)处理多传感器信息,采用主成分分析(Principal Component Analysis,PCA)分离特征值较大的反射信号,删除特征值较小的随机噪声。利用隶属函数得到不同传感器提供的可信度,将支持度以及可信度转换为基本概率分配函数,引入证据理论(Dempster-Shafer,D-S),实现多传感器信息融合优化。仿真分析表明,所提方法可以得到高精度和高效率的多传感器信息融合结果,峰值信噪比达60dB以上,信噪比一直处于12dB以上,融合最长耗时仅为 2。01ms,使其融合性能得到有效优化。
Simulation of Multi-Sensor Information Fusion Algorithm under Fuzzy Set
Typically,the data fusion from multiple sensors involves a large amount of data.Affected by factors such as noise,incompleteness and inaccuracy,the uncertainty of the fusion result also increases.To address this,a multi-sensor information fusion algorithm based on fuzzy sets was proposed.Firstly,Locality Preserving Projection(LPP)was utilized to process multi-sensor information.Then,Principal Component Analysis(PCA)was employed to separate reflection signals with larger eigenvalues and remove random noise with smaller eigenvalues.Next,the mem-bership function was used to calculate the credibility provided by different sensors.Moreover,both the support and credibility were converted into basic probability assignment functions.Finally,the Dempster-Shafer(D-S)theory was introduced to achieve the optimization of multi-sensor information fusion.Simulation analysis results show that the proposed method can obtain high-precision and efficient fusion results.The peak signal-to-noise ratio reaches over 60dB,and the signal-to-noise ratio remains above 12dB.The longest fusion time is only 2.01ms.Therefore,the fusion performance is effectively optimized.

Fuzzy setsMultiple sensorsInformation fusionOptimization

靳双燕、李浩亮

展开 >

郑州工商学院信息工程学院,河南 郑州 450000

郑州大学电气与信息工程学院,河南 郑州 450000

模糊集合 多传感器 信息融合 优化

河南省高等学校重点科研项目计划

22B510014

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(7)
  • 14