首页|基于运动轨迹预测控制的机械臂目标捕捉策略

基于运动轨迹预测控制的机械臂目标捕捉策略

扫码查看
利用机械臂捕捉运动中的物体是一项极具挑战性的任务,目标的轨迹预测、落点计算以及机械臂的运动控制需要在毫秒级内完成。为此提出一种基于运动轨迹预测控制的机械臂目标捕捉策略。首先,结合长短时记忆神经网络和卡尔曼滤波算法,设计一种改进的运动轨迹预测模型,实现动态目标的落点计算。其次,采用基于模型预测方法的位置视觉伺服控制,用于实时修正机械臂的姿态,从而实现运动物体的捕捉。最后,建立基于UR5 机械臂的仿真与实验环境,验证所提方案的有效性。
Target Capture Strategy of Robotic Arm Based on Dynamic Trajectory Predictive Control
Capturing moving objects with a robotic arm is a challenging task since the trajectory prediction of the target,the calculation of the landing point,and the motion control of the robotic arm need to be completed within milli-seconds.To this end,this paper proposes a target capture strategy for robotic arms based on motion trajectory predic-tion control.First,an improved motion trajectory prediction model was designed by combining the long short-term memory neural network and the Kalman filter algorithm to realize the calculation of the dynamic target's landing point.Second,the position-based visual servo control based on the model prediction method was constructed to correct the posture of the robotic arm in real-time,so as to realize the capture of moving objects.Finally,a simulation and experi-mental environment based on the UR5 manipulator was established to verify the effectiveness of the proposed scheme.

Motion trajectory predictionModel predictive controlMotion target capture

李双圻、朱天启、冒建亮

展开 >

上海电力大学自动化工程学院,上海 200090

运动轨迹预测 模型预测控制 运动目标捕捉

国家自然科学基金

62203292

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(7)
  • 3