首页|基于微调BERT混合模型的情感分类方法

基于微调BERT混合模型的情感分类方法

扫码查看
目前情感分类任务大多使用传统的静态词向量语言模型来获取文本上下文相关信息,而这些方法不能够很好地解决兼类词一词多义的问题和分词固化导致的歧义问题,从而导致情感分类准确率不高。针对上述问题,提出了一种多特征信息融合注意力机制和神经网络的混合模型BBLA(BERT-BiLSTM-Attention)。目的是将BERT(预训练语言表征模型)的输出层,专注于情绪分析任务中,对短文本进行向量化表示,将情感词作为词性的新特征拼接到词向量,突出并获取潜在情感信息,增加情感词位置向量,从而解决了情感词一词多义问题和双重否定的反义疑问问题。然后在双向LSTM(长短期记忆神经网络)模型加Attention(注意力机制)分别捕捉文本的双向上下文语义依赖信息,解决了个别情感词丢失问题,最后使用Softmax获取情感分析的结果。实验结果表明,所提出的混合模型在准确率上都有了明显的提高。
A Sentiment Classification Method Based on Fine-Tuning BERT Mixed Model
At present,most of the sentiment classification tasks use the traditional static word vector language model to obtain the context-related information of the text,but these methods can't solve the problem of polysemy and ambiguity caused by word segmentation,which leads to the low accuracy of sentiment classification.To solve these problems,this paper proposes a hybrid model BBLA(BERT-BILSTM-Attention)based on multi-feature information fusion attention mechanism and neural network.The purpose is to focus on the output layer of BERT(pre-trained language representation model)in the sentiment analysis task,perform the vectorization of short text,splice sentimental words as new features of part of speech into the word vector,highlight and obtain the potential sentimental informa-tion,and increase the position vector of sentimental words,thus solving the polysemy problem of sentimental words and the antonym problem of double negation.Then,the bidirectional LSTM(long short-term memory neural network)model and Attention(attention mechanism)are added to capture the bidirectional context semantic dependency infor-mation of the text respectively to solve the problem of the loss of individual sentimental words.Finally,Softmax is used to obtain the results of sentimental analysis.The experimental results show that the accuracy of the hybrid model pro-posed in this paper has been significantly improved.

Sentiment analysisNeural networkAttention mechanismWord vector

帕丽旦·木合塔尔、郭文强、买买提阿依甫、吾守尔·斯拉木

展开 >

新疆财经大学信息管理学院,新疆 乌鲁木齐 830012

新疆大学信息科学与工程学院,新疆 乌鲁木齐 830046

情感分析 神经网络 注意力机制 词向量

高层次人才专项高层次人才专项自治区天池博士计划项目国家重点研发专项

2022XGC0292022XGC017400500952018YFC0825504

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(7)
  • 5