首页|基于支持向量机的多维特征滚动轴承故障诊断

基于支持向量机的多维特征滚动轴承故障诊断

扫码查看
对于轴承诊断的研究方法,常用的是对滚动轴承振动信号的特征提取,且单一维度信号特征提取诊断精度不高,着眼于该痛点,在多特征融合的基础上整合支持向量机(SVM)对滚动轴承进行故障诊断。方法首先对滚动轴承产生的内圈、外圈及滚动元件振动信号进行小波降噪和特征提取,筛选合适的小波基函数,继而从降噪后的振动信号中将时域、频域,以及基于集合经验模态分解方法的IMF能量特征提取,从多种维度将振动信号特征作为提取目标,避免了传统方法的信号失真及模态混叠等无效现象,并最终运用支持向量机(SVM)判别模型对整合后的特征信号进行故障诊断,诊断结果表明,相较于传统的特征提取及分类判别方法,支持向量机(SVM)依赖多维多域的融合特征集下的滚动轴承故障诊断准确率达到100%,具有很好的分类能力。
Multi-featured Fault Diagnosis for Rolling Bearings Based on Support Vector Machines
The commonly used research method for bearing diagnosis is feature extraction of vibration signals of rolling bearings,and the diagnostic accuracy of single dimensional signal feature extraction is not high.Focusing on this pain point,the support vector machine(SVM)is integrated on the basis of multi-features for rolling bearing fault diagnosis.The method firstly reduces the noise by wavelet transform and extracts features from the vibration signals of the inner ring,the outer ring and the rolling element generated by rolling bearings,and then screens the appropriate wavelet basis functions,secondly extracts the time domain,frequency domain and IMF energy features based on the ensemble empirical modal decomposition method from the noise reduced vibration signals.The results show that com-pared with the traditional feature extraction and classification discrimination methods,the accuracy of rolling bearing fault diagnosis by SVM relies on both multi-dimensional and multi-domain fusion feature sets has achieved 100%——It has good classification capability.

Rolling bearingsFault diagnosisWavelet transformMulti-featuresSupport vector machines

许董浩、李程

展开 >

上海工程技术大学航空运输学院,上海 松江 201620

滚动轴承 故障诊断 小波变换 多特征 支持向量机

国家社会科学基金资助项目

15BJL104

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(7)
  • 9