计算机仿真2024,Vol.41Issue(8) :63-67,233.

基于多头注意力机制的瓦斯多粒度预测方法

A Gas Multi-Granularity Prediction Method Based on Multi-Head Attention Mechanism

代劲 庄世鹏
计算机仿真2024,Vol.41Issue(8) :63-67,233.

基于多头注意力机制的瓦斯多粒度预测方法

A Gas Multi-Granularity Prediction Method Based on Multi-Head Attention Mechanism

代劲 1庄世鹏1
扫码查看

作者信息

  • 1. 重庆邮电大学软件工程学院,重庆 400065;重庆邮电大学计算智能重庆市重点实验室,重庆 400065
  • 折叠

摘要

瓦斯是影响矿井安全的重要因素,但现有瓦斯预测工作忽略多粒度数据的异质性,使得预测精度不高.单粒度数据不能完全表示出瓦斯变化的特征,且现有方法不能完全挖掘不同粒度下的数据特性.基于多粒度思想,通过CNN聚合构建多粒度数据,并借助LSTM与多头自注意力的特征提取能力,提出了基于多头自注意力机制的瓦斯多粒度预测模型(MGPM).上述模型能够有效满足瓦斯预测任务中对不同粒度数据的构建,实现煤矿瓦斯数据在不同粒度特性下的深入挖掘.实验结果表明,所提出的模型相比与基线模型降低了预测误差.

Abstract

Gas is an important factor affecting mine safety,but the existing gas prediction work ignores the hetero-geneity of multi-granularity data,resulting in low prediction accuracy.Single granularity data cannot fully express the characteristics of gas change,and the existing methods cannot fully mine the data characteristics under different gran-ularity.Based on the idea of multi-granularity,multi-granularity data is constructed by CNN aggregation,and with the feature extraction ability of LSTM and multi-head self-attention mechanism,a coal mine gas multi-granularity pre-diction model based on multi-head self-attention mechanism(MGPM)is proposed.The model can effectively meet the construction of different granularity data in gas prediction tasks,and realize the in-depth mining of coal mine gas data under different granularity characteristics.The experimental results show that the proposed model reduces the prediction error compared with the baseline model.

关键词

瓦斯预测/多粒度/特征提取/多头注意力

Key words

Gas prediction/Multi-granularity/Feature extraction/Multi-headattention

引用本文复制引用

基金项目

国家自然科学基金(61772096)

重庆市自然科学基金(cstc2019jcyjcxttX0002)

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
段落导航相关论文