计算机仿真2024,Vol.41Issue(8) :118-126.

基于集中式特征金字塔的交通标志识别

Traffic Sign Recognition Based on Centralized Feature Pyramid

李文举 刘子琼 张干 崔柳
计算机仿真2024,Vol.41Issue(8) :118-126.

基于集中式特征金字塔的交通标志识别

Traffic Sign Recognition Based on Centralized Feature Pyramid

李文举 1刘子琼 1张干 1崔柳1
扫码查看

作者信息

  • 1. 上海应用技术大学计算机科学与信息工程学院,上海 201418
  • 折叠

摘要

针对目前交通标志识别技术中存在的畸变目标、小目标检测难等问题,提出一种基于集中式特征金字塔的交通标志识别算法.首先,使用集中式特征金字塔改进原始的特征融合网络,用轻量级多层感知机(MLP)来捕获全局远程依赖,通过可学习视觉中心机制(LVC)来捕获输入图像的局部角区域,提高了对畸变目标以及小目标的检测精度;其次,使用递归门控卷积提取浅层特征图的高阶空间交互信息,改善对小目标的检测效果;最后,使用SIoU回归损失函数,引入角度损失,重新定义惩罚指标,减少总损失的自由度,防止预测框在训练时四处游荡,加快收敛速度,使定位更加精确.在TT100K数据集上平均检测精度为93.4%,和传统的YOLOv5n相比精度提升了 3.5 个百分点,帧处理速度达到94.34fps.

Abstract

A traffic sign recognition algorithm based on feature concentration pyramid was proposed to solve the problems of distorted target and small target detection.Firstly,the original feature fusion network is improved by using the feature concentration pyramid,and the global remote dependence is captured by a lightweight multi-layer percep-tron(MLP).The local corner region of the input image is captured by the parallel learning vision center mechanism(LVC),which improves the detection accuracy of distorted targets and small targets.Secondly,recursive gated convo-lution is utilized to extract high-order spatial interaction information of shallow feature maps,which is beneficial to improve the detection effect of small targets.Finally,the SIoU regression loss function is used,with angle loss intro-duced to redefine the penalty index.It not only reduces the degree of freedom of total loss,preventing the prediction box from wandering around during training,but also speeds up the convergence rate to make the positioning more ac-curate.Numerous experiments on the TT100K data set demonstrate that the average detection accuracy is 93.4%,which is 3.5% higher than that of the traditional YOLOv5n,and the frame processing speed reaches up to 94.34fps.

关键词

集中式特征金字塔/递归门控卷积/交通标志识别/目标检测

Key words

Centralized feature pyramid/Recursive gated convolution/Traffic sign recognition/Target detection

引用本文复制引用

基金项目

国家自然科学基金资助项目(61903256)

国家自然科学基金资助项目(61973307)

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
段落导航相关论文