计算机仿真2024,Vol.41Issue(8) :170-174.

深度生成模型下缺损图像修复方法仿真研究

Simulation Research on Defect Image Repair Method Based on Depth Generation Model

代文征 余建国 唐建国
计算机仿真2024,Vol.41Issue(8) :170-174.

深度生成模型下缺损图像修复方法仿真研究

Simulation Research on Defect Image Repair Method Based on Depth Generation Model

代文征 1余建国 2唐建国3
扫码查看

作者信息

  • 1. 黄河科技学院 工学部,河南 郑州 450000
  • 2. 郑州航空航天大学 智能工程学院,河南 郑州 450016
  • 3. 河南工业大学 信息科学与工程学院,河南 郑州 450001
  • 折叠

摘要

图像在存储或传输过程中容易产生缺损,为获取全面的图像信息,提出一种基于深度生成模型的缺损图像修复方法.利用小波线性变换特征,在小波逆变换过程中选取合适的阈值去除图像噪声,得到初始图像,利用深度生成模型中的生成对抗网络增强图像质量,通过对抗训练增强缺损图像质量,将图像修复问题转换成像素填充问题,缩短结构部分与破损区域的距离,生成缺损图像预填充结果,利用PDE有限差分修复缺损图像中心点信息,利用人工复原法修改等照度线方向权重,实现缺损图像修复.实验结果表明,所提方法修复效果较好,能最大程度保留原始图像信息.

Abstract

At present,the image is prone to defects during storage or transmission.In order to obtain complete im-age information,this paper put forward a method of repairing defective images based on deep generative model.At first,wavelet linear transformation features were utilized to select an appropriate threshold during the wavelet inverse transformation and remove image noise thus obtaining the initial image.Then,a generative adversarial network in deep generative models was used to enhance the quality of the defective image.Meanwhile,the problem of image restoration was transformed into a pixel-filling problem,thus shortening the distance between the structural part and the damaged area.After that,a preliminary filled result for the defective image was generated.Finally,the PDE finite difference method was adopted to repair the central point of the defective image.At the same time,the artificial restoration meth-od was used to modify the weight of the isophote direction,thus achieving the restoration of the defective image.Ex-perimental results show that the proposed method has good restoration effect and can retain the original image informa-tion to the greatest extent.

关键词

图像修复/小波的线性变换/生成对抗网络/等照度线方向/图像增强

Key words

Image restoration/Linear transformation of wavelet/Generative adversarial network GAN/Isophote direction/Image enhancement

引用本文复制引用

基金项目

河南省民办高等学校品牌专业建设(ZLG201903)

河南省高等学校重点科研项目(22A520033)

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
段落导航相关论文