计算机仿真2024,Vol.41Issue(8) :189-194.

基于室内点云地图的特征轮廓识别方法

Feature Contour Recognition Method Based on Indoor Point Cloud Map

刘亮 郑敏毅 张农 刘鹏飞
计算机仿真2024,Vol.41Issue(8) :189-194.

基于室内点云地图的特征轮廓识别方法

Feature Contour Recognition Method Based on Indoor Point Cloud Map

刘亮 1郑敏毅 1张农 1刘鹏飞1
扫码查看

作者信息

  • 1. 合肥工业大学汽车与交通工程学院,安徽 合肥 230601
  • 折叠

摘要

针对用激光雷达构建室内点云地图时存在窗户等透明物体,导致激光雷达的线束透过窗户产生噪点影响地图精度等问题,提出一种适用于室内三维点云地图的墙面识别方法,并借助此方法进一步识别出窗户的位置,进而实现对窗外的噪点与集群点的去除.前者从三维点云地图中的各个点分布的密度来识别出墙面点;后者则通过墙面坐标定位到外墙及窗户位置,从而去除噪点和无效特征.实验在三个场景下的室内地图进行方法验证,结果表明,上述方法在墙面和窗户的提取中准确率均在 95%以上,并可有效的去除窗外噪点.在特定场景下窗户提取的召回率可达到 100%,上述方法可用于简单和较为复杂的室内环境中进行窗墙识别去噪,在特征繁多的室内也有不错的效果.

Abstract

In this paper,there are transparent objects such as windows when building indoor point cloud maps with lidar,which leads to noise generated by the lidar's wiring harness through the window and affects the accuracy of the map.To solve this problem,a wall recognition method suitable for indoor three-dimensional point cloud maps is proposed.With this method,the position of the window is further identified,and the noise and cluster points outside the window are removed.The former identifies the wall points from the density of each point distribution in the three-dimensional point cloud map;the latter locates the exterior wall and window position through the wall coordinates,thereby removing noise and invalid features.The experiment verifies the method in the indoor map of three scenes.The results show that the accuracy of this method in the extraction of walls and windows is above 95%,and it can ef-fectively remove the noise outside the window.And the recall rate of window extraction can reach 100% in specific scenarios.This method can be used for window wall recognition and denoising in simple and complex indoor environ-ments,and has good results in indoor environments with many features.

关键词

三维激光点云/室内墙面识别/室内窗户检测/窗外噪点去除

Key words

3D laser point cloud/Interior wall recognition/Indoor window inspection/Noise removal outside the window

引用本文复制引用

基金项目

国家自然科学基金(52272392)

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
段落导航相关论文