计算机仿真2024,Vol.41Issue(8) :204-209.

基于上下文融合和注意力的安全帽检测方法

Safety Helmet Detection Method Based on Context Fusion and Attention

徐志刚 李宇根 朱红蕾
计算机仿真2024,Vol.41Issue(8) :204-209.

基于上下文融合和注意力的安全帽检测方法

Safety Helmet Detection Method Based on Context Fusion and Attention

徐志刚 1李宇根 1朱红蕾1
扫码查看

作者信息

  • 1. 兰州理工大学计算机与通信学院,甘肃 兰州 730050
  • 折叠

摘要

安全帽检测是近年来目标检测在工业生产作业领域的一个研究热点.针对安全帽检测过程中容易出现的小尺度目标错检、漏检等问题,提出一种基于上下文融合和注意力的安全帽检测方法.方法通过利用混合域注意力强调目标关键特征信息,加强特征提取;同时,构建基于非局部注意模块的上下文信息融合结构,将底层全局上下文信息引入深层特征中,进一步细化深层语义信息;此外,利用感受野模块捕获多尺度特征和增大感受野,以减少小尺度目标在特征融合过程中出现特征信息丢失,以及预测过程中对小尺度目标不敏感的问题.实验分析表明,上述方法在安全帽佩戴数据集上对于安全帽检测的AP值达到 93.10%,较原YOLOv4 提升2.12%,mAP达到93.07%,较原YOLOv4 提升 1.39%.

Abstract

Safety helmet detection is a research hotspot in the field of object detection in industrial production op-erations in recent years.In view of the problems such as misdetection and missed detection of small-scale objects that are prone to occur in the process of safety helmet detection,this paper proposes a context fusion and attention based method for safety helmet detection.This method enhances feature extraction by emphasizing the target key feature in-formation by using mixed-domain attention;At the same time,a context information fusion structure based on a non-local attention module is constructed,and the underlying global context information is introduced into the deep features to further refine the deep semantic information;In addition,the receptive field module is used to capture multi-scale features and increase the receptive field to reduce the loss of feature information in the feature fusion process of small-scale targets and the insensitivity to small-scale targets in the prediction process.The experimental results show that the AP value of the method in this paper for safety helmet detection on the safety helmet wearing dataset reaches 93.10%,which is 2.12% higher than the original YOLOv4,and the mAP reaches 93.07%,which is 1.39% higher than the original YOLOv4.

关键词

安全帽检测/上下文融合/注意力机制

Key words

Safety helmet detection/Context fusion/Attention mechanism

引用本文复制引用

基金项目

国家自然科学基金(62161020)

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
段落导航相关论文