计算机仿真2024,Vol.41Issue(8) :228-233.

改进YOLOv7的输电线路变尺度目标检测

Improved YOLOv7 for Variable Scale Target Detection of Transmission Lines

周景 李英杰 周蓉 崔灿灿
计算机仿真2024,Vol.41Issue(8) :228-233.

改进YOLOv7的输电线路变尺度目标检测

Improved YOLOv7 for Variable Scale Target Detection of Transmission Lines

周景 1李英杰 1周蓉 1崔灿灿1
扫码查看

作者信息

  • 1. 华北电力大学控制与计算机工程学院,北京 102206
  • 折叠

摘要

针对输电线路无人机巡检图像中小目标检测精度低下的问题,提出一种改进型YOLOv7 的输电线路变尺度多目标的检测方案.方案首次将基于YOLO7 的目标检测模型应用到输电线路目标检测中,引入Transformer注意力工作机制,使用gn Conv代替高效聚合网络中的卷积层提取巡检图像特征,经过RFPN网络将不同分辨率特征进行融合后,分别进行不同尺度目标的预测,提高对小目标的检测精度,达到了93.68%的平均检测精度,也可以检测到被遮挡的目标,具有一定的泛化能力.结果表明,上述模型能够有效检测出巡检图像中的防震锤和绝缘子,为后续故障诊断提供了理论依据.

Abstract

Aiming at the problem of low detection accuracy of small targets in UAV inspection images of transmis-sion lines,an improved YOLOv7 variable-scale multi-target detection scheme for transmission lines is proposed.This solution applies the YOLOv7-based target detection model to transmission line target detection for the first time,intro-ducing the Transformer attention mechanism,usinggn Conv to replace the convolution layer in the efficient aggregation network to extract inspection image features,and fusing features of different resolutions through RFPN network to pre-dict targets of different scales.The detection accuracy of small targets is improved,reaching an average detection ac-curacy of 93.68% .It can also detect occluded targets and has a certain generalization ability.The results show that the model can effectively detect the anti-vibration hammer and insulator in the inspection image,which provides a theoretical basis for subsequent fault diagnosis.

关键词

深度学习/目标检测/输电线路

Key words

Deep learning/Object detection/Transmission lines

引用本文复制引用

基金项目

国家自然科学基金项目(52179014)

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
段落导航相关论文