计算机仿真2024,Vol.41Issue(8) :234-237,302.

基于改进注意力机制的自然语言特征提取仿真

Simulation of Natural Language Feature Extraction Based on Improved Attention Mechanism

蓝桂军 李民
计算机仿真2024,Vol.41Issue(8) :234-237,302.

基于改进注意力机制的自然语言特征提取仿真

Simulation of Natural Language Feature Extraction Based on Improved Attention Mechanism

蓝桂军 1李民1
扫码查看

作者信息

  • 1. 昆明理工大学机电工程学院,云南 昆明 650000
  • 折叠

摘要

自然语言具有模糊性和歧义性特点,加大了特征提取难度,为了能够精准提取自然语言特征,提出一种基于模糊关联优化的自然语言特征提取方法.将不确定性自然语言信息利用三元语言表示模型描述,给出一个初始隶属度函数(MF),设定最大化模糊项集支持度和语义可解释性为适应度函数,利用群搜索优化(GSO)算法获取最佳MF,通过优化后的模糊关联规则算法挖掘自然语言信息.在注意力机制中加入生成函数和限制函数,改进传统注意力机制,基于改进后的注意力机制完成自然语言特征提取.仿真结果表明,所提方法可以获取高精度与高覆盖率的自然语言特征提取结果.

Abstract

The fuzziness and ambiguity of natural language increase the difficulty of feature extraction.To accu-rately extract natural language features,a method of extracting natural language features based on fuzzy association op-timization was proposed.Initially,uncertain natural language information was described by using a ternary language representation model.Then,an initial membership function(MF)was provided.Next,maximizing the support of fuzzy item sets and semantic interpretability were set as the fitness function.Moreover,the Group Search Optimization(GSO)algorithm was adopted to obtain the optimal MF.Furthermore,natural language information was mined by the optimized fuzzy association rule algorithm.After that,the generation function and restriction function were added to the attention mechanism.Meanwhile,the traditional attention mechanism was improved.On this basis,the extraction of natural language features was completed.Simulation results show that the proposed method can achieve high-preci-sion and high-coverage natural language feature extraction.

关键词

模糊关联优化/自然语言/特征提取/限制函数/注意力机制

Key words

Fuzzy correlation optimization/Natural language/Feature extraction/Restriction function/Attention mechanism

引用本文复制引用

基金项目

&&(XYYJ2022C01)

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
段落导航相关论文