计算机仿真2024,Vol.41Issue(8) :262-267.

SRM转速控制参数自适应调节的新方法

A New Method for Adaptive Adjustment of Speed Control Parameters of Switched Reluctance Motor

栾茹 陈怀润 邹洪建
计算机仿真2024,Vol.41Issue(8) :262-267.

SRM转速控制参数自适应调节的新方法

A New Method for Adaptive Adjustment of Speed Control Parameters of Switched Reluctance Motor

栾茹 1陈怀润 2邹洪建2
扫码查看

作者信息

  • 1. 北京建筑大学电气与信息工程学院,北京 100044;建筑大数据智能处理方法研究北京市重点实验室,北京 100044
  • 2. 北京建筑大学电气与信息工程学院,北京 100044
  • 折叠

摘要

为了解决数据训练带来的开关磁阻电机(简称SRM)响应慢的问题,构建了一种基于柔性神经网络逻辑框架的转速PID参数的迭代算法,并对该柔性神经网络的激活函数进行了较大改进,不用大量数据样本事先训练,先将对转速纠偏的调节转化为对转矩变化轨迹的调节,然后通过在线调整增量式PID调节器的KP、KI、KD参数,迫使电磁转矩逼近转矩平衡点的同时,转速达到给定值.通过与动态响应好的传统转速PI控制进行仿真对比,结果表明,在所提转速PID参数自适应迭代算法的控制下,开关磁阻电机具有更好的调速性能以及更低的转矩脉动.

Abstract

In this paper,an iterative algorithm of speed PID parameters based on the logical framework of the flex-ible neural network is constructed,and the activation function of the flexible neural network is improved.Without training a large number of data samples in advance,the adjustment of speed correction is first transformed into the ad-justment of torque change trajectory.Then the KP,Ki and KD parameters of the incremental PID regulator are adjus-ted online to force the electromagnetic torque to approach the torque balance point,while the speed reaches the given value.Compared with the traditional speed PI controller with good dynamic response,the simulation results show that under the control of the speed PID parameter adaptive iterative algorithm proposed in this paper,the switched reluc-tance motor has better speed regulation performance and lower torque ripple.

关键词

开关磁阻电机/自适应/柔性神经网络/激活函数

Key words

Switched reluctance motor/Self-adaption/Flexible neural network/Activation function

引用本文复制引用

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
段落导航相关论文