计算机仿真2024,Vol.41Issue(8) :286-291.

基于TimeSVD++与DPC的推荐算法研究

Research on Recommendation Algorithm Based on TimeSVD++and DPC

陈功进 孙士保 卜卫锋 杨焕静
计算机仿真2024,Vol.41Issue(8) :286-291.

基于TimeSVD++与DPC的推荐算法研究

Research on Recommendation Algorithm Based on TimeSVD++and DPC

陈功进 1孙士保 1卜卫锋 1杨焕静1
扫码查看

作者信息

  • 1. 河南科技大学信息工程学院,河南 洛阳 471023
  • 折叠

摘要

针对使用奇异值分解(SVD)方法时需要填充矩阵的内容较多以及K-means算法受到K值的影响且数据集形状限制等问题,提出一种将TimeSVD++与改进的密度峰值聚类结合的方法.首先在SVD++的基础上引入参数时间因子,构建Tim-eSVD++模型;其次,采用将相似系数引入高斯核函数的方法,对密度峰聚类算法中的局部密度公式进行修正;引入信息熵确定最优截断距离,最后在数据集MovieLens-1M和MovieLens-100k上验证,并将实验结果与其它算法进行对比.结果表明:所提出的方法在MAE,RMSE,Recall和F1 值指标上均优于其它的算法.

Abstract

In view of the problems that the singular value decomposition method needs to fill the matrix too much,the k-means algorithm is affected by the K value and the shape of the data set is limited,this paper proposes a meth-od combining TimeSVD++with the improved density peak clustering.Firstly,time factor was introduced to construct TIMESVD++model based on SVD++.Secondly,by introducing the similarity coefficient into the Gaussian kernel function,the local density formula in the density peak clustering algorithm was modified.Information entropy was in-troduced to determine the optimal truncation distance,and finally the data sets MovieLens-1M and MovieLens-100k were verified.The experiments showed that the proposed method was superior to other algorithms in MAE,RMSE,Re-call and F1 value indexes.

关键词

时间因子/密度峰值聚类/局部密度/截断距离

Key words

Time factor/Density peak clustering/Local density/Truncation distance

引用本文复制引用

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
段落导航相关论文