计算机仿真2024,Vol.41Issue(8) :320-325.

绿色高层建筑室内太阳辐射热量估算仿真研究

Simulation Research on Indoor Solar Radiation Heat Estimation of Green High-rise Building

刘磊 董纹杉 金雅庆
计算机仿真2024,Vol.41Issue(8) :320-325.

绿色高层建筑室内太阳辐射热量估算仿真研究

Simulation Research on Indoor Solar Radiation Heat Estimation of Green High-rise Building

刘磊 1董纹杉 1金雅庆2
扫码查看

作者信息

  • 1. 长春工业大学人文信息学院,吉林 长春 130122
  • 2. 吉林建筑大学艺术设计学院,吉林 长春 130000
  • 折叠

摘要

绿色建筑窗体太阳辐射热量预测实时性低且准确性差,为解决上述问题,提高研究的实用性,基于外环境数据处理,在相关性分析与聚类分析的基础上,提出一种数据处理与数据预测相融合的建筑室内太阳辐射热量预测算法,即PKM_SVR算法.算法首先对外环境数据进行预处理,然后在Dynamic Daylighting中构建房屋建筑主体;接着对室外环境数据进行匹配,通过选则窗体透射率,计算该状态下室内逐块辐射热量;然后对室内辐射热量与室外环境数据进行相关性分析与聚类处理,并将处理后的数据划分成训练、测试集;最后基于交叉验证的方法构建优化PKM_SVR室内辐射热量初始预测模型.仿真结果表明,十折交叉算法对模型优化效率最高,此时G=0.692、C=5.824,且R2=0.925;对比仿真结果表明,较其它基线算法模型相比,PKM_SVR模型具有最低的RMSE指标参数,较ANN与SVM模型相比,分别降低了23.1%和31.3%,且具有较高的R2 指标参数,平均提升了 10.7%.综上所述,PKM_SVR算法有效的提升了室内热量预测的准确率,具有重要的仿真价值.

Abstract

The prediction of solar radiation heat in green building windows suffers from low real-time performance and poor accuracy.In order to solve these problems and improve the practicability of the research,this paper proposes a prediction algorithm for indoor solar radiation heat based on data processing and data prediction,namely the PKM_SVR algorithm,which is based on the correlation analysis and clustering analysis.Firstly,the algorithm preprocesses the external environmental data,and then constructs the main building in Dynamic Daylighting.Secondly,the algorithm matches the outdoor environmental data,and calculates the indoor radiant heat block by block in this state by selecting the window transmittance.Then,the data of indoor radiant heat and outdoor environment are processed by correlation analysis and clustering,and the processed data are divided into training and test sets.Finally,the initial prediction model of the indoor radiant heat of optimized PKM_SVR is constructed based on the cross-validation meth-od.The simulation results show that the ten-fold crossover algorithm is the most efficient for model optimization,when G=0.692,C=5.824,and R2=0.925.Simulation results show that,compared with other baseline algorithm models,the PKM_SVR model has the lowest RMSE index parameters,which are reduced by 23.1% and 31.3% compared with ANN and SVM models,respectively,and has higher R2 index parameters,which is increased by 10.7% on aver-age.To sum up,the PKM_SVR algorithm effectively improves the accuracy of indoor heat prediction,and has important simulation value.

关键词

辐射热量/聚类/相关性分析

Key words

Radiant Heat/Clustering/Correlation Analysis

引用本文复制引用

基金项目

吉林省教育厅人文社科研究项目(JJKH20231443SK)

吉林省产学合作协同育人项目(20221K12O67007V)

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
段落导航相关论文