计算机仿真2024,Vol.41Issue(8) :331-337.

基于混合策略改进的教与学优化算法

Mixed Strategy Based Improved Teaching-Learning Based Optimization

丁正生 丁姝予 文嘉豪
计算机仿真2024,Vol.41Issue(8) :331-337.

基于混合策略改进的教与学优化算法

Mixed Strategy Based Improved Teaching-Learning Based Optimization

丁正生 1丁姝予 1文嘉豪1
扫码查看

作者信息

  • 1. 西安科技大学理学院,陕西 西安 710600
  • 折叠

摘要

为解决教与学优化算法容易早熟收敛的问题,在原算法的基础上提出一种基于混合策略改进的教与学优化算法(Mixed Strategy Based Improved Teaching-Learning Based Optimization,M-SITLBO).首先,利用Logistic-Tent混沌映射策略初始化种群,保证种群的多样性;其次,在教师和学生阶段分别引入黄金正弦算法和基于莱维飞行与对数螺旋线的搜索策略优化个体的位置更新公式,增强并平衡算法的全局和局部收敛性能;最后,设计仿真对其寻优性能进行测试,结果表明改进后的教与学优化算法寻优速度、精度以及稳定性显著提升,且具有较强跳出局部最优的能力.

Abstract

In order to solve the problem of premature convergence,this paper proposes a Mixed Strategy Based Improved Teaching-Learning Based Optimization.Firstly,the Logistic-Tent chaotic mapping strategy was used to ini-tialize the population to ensure the diversity of the population.Secondly,the Golden Sine Algorithm and the search strategy based on Levy flight and logarithmic spiral were introduced to optimize the individual position update formula in the teacher and student stage respectively to improve and equilibrate the global and local convergence performance of the algorithm.Finally,simulation experiments were designed to test its optimization performance.The results show that the optimization speed,accuracy and stability of the improved Teaching-Learning Based Optimization are signifi-cantly improved,and it has a strong ability to jump out of the local optimal.

关键词

基于优化的教与学/混沌映射/黄金正弦算法/莱维飞行/对数螺旋线

Key words

Teaching-learning based optimization/Chaotic mapping/Golden sine algorithm/Levy flight/Loga-rithmic spiral

引用本文复制引用

基金项目

国家自然科学基金项目(11601417)

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
段落导航相关论文