计算机仿真2024,Vol.41Issue(8) :344-348,485.

一种用于无人机任务分配的改进粒子群算法

An Improved Particle Swarm Optimization for UAV Target Assignment

李征 彭博 陈海东 陈建伟
计算机仿真2024,Vol.41Issue(8) :344-348,485.

一种用于无人机任务分配的改进粒子群算法

An Improved Particle Swarm Optimization for UAV Target Assignment

李征 1彭博 1陈海东 1陈建伟1
扫码查看

作者信息

  • 1. 北京宇航系统工程研究所,北京 100076
  • 折叠

摘要

粒子群算法在求解任务分配问题时往往容易早熟,不能收敛到全局最优解,为了解决上述问题,提出一种自适应学习的模拟退火粒子群算法,设计了一种惯性权重随粒子位置变化的自适应调节策略,同时改变了粒子的学习方式,增加了向其它粒子最优位置学习的机会,提高了粒子群算法的寻优速度,并进一步在粒子群算法的速度更新公式中引入模拟退火思想,改变全局最优点的更新方式,提高了种群多样性,使粒子群算法能够快速跳出局部最优解.通过对多无人机协同探测任务分配问题的求解,结果表明,与经典粒子群算法相比,改进的粒子群算法具有更快的收敛速度和更强的寻优能力,适用于较大规模的任务分配问题,具有很强的实用价值.

Abstract

Particle swarm optimization(PSO)algorithm is often precocious in solving task assignment problems and cannot converge to the global optimal solution.In order to solve the above problems,a simulated annealing particle swarm algorithm with adaptive weight is proposed.An adaptive adjustment strategy of inertia weight changing with particle position is designed,and the learning mode of the particle is changed,which increases the chance of learning from the optimal position of other particles.Furthermore,simulated annealing is introduced into the particle swarm optimization speed updating formula to change the updating method of the global optimum,improve the diversity of the population,and make PSO jump out of local optimum quickly.By solving the cooperative reconnais-sance task allocation problem of multiple unmanned aerial vehicles,the results show that compared to the classical particle swarm optimization algorithm,the improved particle swarm optimization algorithm has faster convergence speed and stronger optimization ability,and is suitable for large-scale task allocation problem,and has a strong practi-cal value.

关键词

无人机探测/任务分配/自适应权重/模拟退火/粒子群算法

Key words

UAV reconnaissance/Task allocation/Adaptive weight/Simulated annealing/Particle swarm optimi-zation

引用本文复制引用

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
段落导航相关论文