计算机仿真2024,Vol.41Issue(8) :360-368.

基于全局搜索策略的自适应樽海鞘群算法

Adaptive Salp Swarm Algorithm Based on Global Search Strategy

张凌志 王宗山
计算机仿真2024,Vol.41Issue(8) :360-368.

基于全局搜索策略的自适应樽海鞘群算法

Adaptive Salp Swarm Algorithm Based on Global Search Strategy

张凌志 1王宗山2
扫码查看

作者信息

  • 1. 南方电网数字电网研究院有限公司,广东 广州 510000
  • 2. 云南大学信息学院,云南 昆明 650500
  • 折叠

摘要

针对基本樽海鞘群算法(SSA)存在全局搜索能力弱、易陷入局部极值等问题,提出一种基于自适应全局最优引导机制和自适应控制因子的改进型樽海鞘群算法.首先,在领导者位置更新阶段引入自适应全局最优引导机制,有效地改善了算法的全局搜索能力.其次,在跟随者位置更新阶段引入自适应控制因子,极大地改善了算法的局部搜索能力.为验证所提算法的优化性能,采用6 个单峰、7 个多峰标准测试函数和29 个CEC 2017 测试函数进行实验,在相同的迭代次数条件下,所提算法的整体性能优于基本SSA算法、多种SSA变体和其它前沿对比算法.

Abstract

To address the problems of weak global search capability and easy to fall into local optimal in the basic salp swarm algorithm(SSA),an improved SSA algorithm based on adaptive global optimal guidance mechanism and adaptive control factor is proposed.Firstly,the adaptive global optimal guidance mechanism is introduced in the leader position update phase,which effectively improves the global search ability of the algorithm.Secondly,the adaptive control factor is introduced in the follower position update phase,which greatly improves the local search ability of the algorithm.To verify the optimization performance of the proposed algorithm,six unimodal,seven multimodal benchmark functions,and 29 CEC 2017 test functions are employed for experiments.The experimental results show that the overall performance of the developed algorithm is better than the basic SSA,several SSA variants,and other frontiers comparison algorithms under the same number of iterations.

关键词

樽海鞘群算法/全局最优引导/自适应控制因子/全局优化

Key words

Salp swarm algorithm/Global best guidance/Adaptive control factor/Global optimization

引用本文复制引用

基金项目

国家自然科学基金(61902218)

国家自然科学基金(61972228)

中国南方电网公司科技项目(GDKJXM20198046)

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
段落导航相关论文