计算机仿真2024,Vol.41Issue(8) :379-385,432.

基于间接融合方式的多模态情感分析门控算法

Multimodal Sentiment Analysis Gating Algorithm Based on Indirect Fusion

杨萌 李业刚 张浩
计算机仿真2024,Vol.41Issue(8) :379-385,432.

基于间接融合方式的多模态情感分析门控算法

Multimodal Sentiment Analysis Gating Algorithm Based on Indirect Fusion

杨萌 1李业刚 1张浩1
扫码查看

作者信息

  • 1. 山东理工大学计算机科学与技术学院,山东 淄博 255000
  • 折叠

摘要

由于Transformer的并行结构,在多模态情感分析领域借助其间接融合的模型大多难以建模时间维度上的语义关系、不能针对不同模态的重要程度有效控制信息输出.为此,提出AGRU-Transfusion-MGN融合算法.算法在门控循环单元上添加软注意力机制,提取时序情感信息;在Transformer的编码器和解码器间构造反向转换,使用平均绝对误差弥合解码特征与相应目标特征的融合损失;设置门控函数搭建多模态门控机制,综合判断不同模态的重要性.为验证算法性能,在多模态情感数据集CMU-MOSEI上进行实验,使用加权精度、平均绝对误差以及符号检测作为评价指标,结果显示本方法优于当前见刊的先进方法.

Abstract

Due to the parallel structure of Transformer,in the field of Multimodal Sentiment Analysis,it is difficult to model the semantic relationship in the time dimension with indirect fusion models,and cannot effectively control the information output according to the importance of different modalities.To this end,this paper proposes the AGRU-Transfusion-MGN fusion algorithm.The algorithm adds a soft-attention mechanism to the Gated Recurrent Unit to ex-tract time-series emotional information,constructs a reverse transformation between the encoder and decoder of the Transformer,uses the mean absolute error to bridge the fusion loss of the decoded feature and the corresponding target feature,and sets the gated function and builds a multi-modal gated mechanism to comprehensively judge the impor-tance of different modalities.In order to verify the performance of the algorithm,the experiments were carried out on the multimodal emotion dataset CMU-MOSEI,and the weighted accuracy,mean absolute error and symbol detection were used as evaluation indicators.

关键词

多模态情感分析/门控循环单元/多模态融合/多模态门控网络

Key words

Multimodal sentiment analysis/Gate recurrent unit/Multimodal fusion/Multimodal gated network

引用本文复制引用

基金项目

国家自然科学基金资助项目(61671064)

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
段落导航相关论文