首页|基于s2p模型的非侵入式负荷分解方法研究

基于s2p模型的非侵入式负荷分解方法研究

扫码查看
非侵入式监测的负荷分解可以精确得到家庭用户的用电信息和各个用电设备的功率数据,为需求侧管理和用户用电优化提供了数据基础。基于长短期记忆神经网络(LSTM)模型对提出的五种用电设备的有功功率数据进行预测,结合改进的差值双滑动窗口算法对预测数据进行事件检测;给出一种自注意力机制的序列到点(s2p)模型,将传统模型的编码器部分换成自注意力模型和全连接的前馈网络,对于一些长序列数据有更好的分解效果。实验结果表明:提出的LSTM结合改进的差值滑动窗口算法的事件检测精确度、召回率和F1 分数分别为 93。50%、90。55%和 92。00%;提出的基于自注意力机制的s2p模型的NDE、MAE、SAE三项分解性能指标平均误差分别比传统s2p模型小 0。076、4。111、0。223。
Research on Non-Intrusive Load Decomposition Method Based on s2p Model
The non-invasive monitoring of load decomposition can accurately obtain the electricity consumption information of household users and the power data of various electrical devices,providing a data foundation for demand side management and user electricity optimization.This paper predicts the active power data of the proposed five types of power-using devices based on the long short-term memory neural network(LSTM)model,and combines the im-proved differential double sliding window algorithm for event detection of the predicted data;a sequence-to-point(s2p)model with a self-attentive mechanism is given,and the encoder part of the traditional model is replaced with a self-attentive model and a fully connected feedforward network,which has better decomposition effect on some long sequence data.The experimental results show that the event detection accuracy,recall rate and F1 score of the pro-posed LSTM combined with the improved difference sliding window algorithm are 93.50%,90.55% and 92.00%,re-spectively;the average errors of the three decomposition performance metrics,NDE,MAE and SAE,of the proposed s2p model based on the self-attentive mechanism are smaller than those of the traditional s2p model by 0.076,4.111,and 0.223,respectively.

Non-intrusive load monitoringEvent detectionLoad decompositionLong-and short-term memory networksSequence-to-point

尹梓豪、谢雨飞

展开 >

北京建筑大学,北京 102616

非侵入式负荷监测 事件检测 负荷分解 长短期记忆网络 序列到点

国家自然科学基金项目北京市教委科研项目-科技计划一般项目

61703028KM202110016007

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(9)
  • 4