首页|基于深度学习的人脸识别仿真技术研究与实现

基于深度学习的人脸识别仿真技术研究与实现

扫码查看
低分辨率人脸图像可检测特征显著性差,导致小目标人脸表情识别准确率低、稳定性弱。为解决上述问题,基于MPII人体检测数据集,通过数字图像优化处理,构建出一种人体关键点检测与特征提取融合的小目标人脸表情识别算法,即OPE-SVM算法。算法首先采用改进Open Pose深度学习算法计算人体关键点的置信度图与亲和力图,并利用极大值抑制法提取单人骨骼点图;然后通过定义基轴,以"鼻"关键点校正人脸骨骼图,并采用人脸分割法则对图像进行缩放分割,提升人脸表情可识别的准确性;接着提取并融合人脸图像的三维LBP特征与动态纹理特征,提高模型计算效率;最后采用十折交叉法训练并优化人脸表情识别SVM模型。消融实验结果显示,OPE-SVM算法中不同优化结构对人脸表情识别结果起正向影响,且当三组优化结构共同叠加时,模型性能达到巅峰;对比实验结果显示,较其它叠加模型相比,OPE-SVM模型的稳定性参数平均提升4。22%,准确率参数平均提升4。14%,且OPE-SVM模型具有较好的时效性。综上所述,OPE-SVM算法可有效提高小目标人脸表情识别的准确性与稳定性,具有重要的仿真意义。
Research and Implementation of Facial Recognition Simulation Technology Based on Deep Learning
Low resolution facial images have poor feature saliency,resulting in low accuracy and weak stability in small target facial expression recognition.To solve the above problems,based on the MPII human detection dataset,a small target facial expression recognition algorithm,OPE-SVM algorithm,is constructed by integrating human keypoint detection and feature extraction through digital image optimization processing.The algorithm first uses the improved Open Pose deep learning algorithm to calculate the confidence map and affinity map of the key points of the human body,and uses the maximum suppression method to extract the single skeleton point map;Then by defining the base axis,the"nose"key points are used to correct the face skeleton map,and the face segmentation method is used to scale and segment the image to improve the accuracy of facial expression recognition;Then,the 3D LBP features and dynamic texture features are extracted and fused to improve the computational efficiency of the model.Finally,the SVM model for facial expression recognition is trained and optimized by using the ten-fold cross method.The results of ablation experiments show that different optimization structures in OPE-SVM algorithm have a positive impact on facial expression recognition results,and when the three groups of optimization structures are superimposed together,the model performance reaches its peak;The experimental results show that compared with other overlay models,the stabilityandaccuracy of OPE-SVM model are improved by 4.22% and 4.14%,respectively,and the OPE-SVM model has better timeliness.To sum up,OPE-SVM algorithm can effectively improve the accuracy and stability of facial expression recognition of small targets,which has important simulation significance.

Keypoint detectionFeature fusionFace recognition

孙可新、鲁慧民

展开 >

中国科学技术大学软件学院,安徽 合肥 230026

长春工业大学计算机科学与工程学院,吉林 长春 130102

关键点检测 特征融合 人脸识别

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(9)