首页|用户侧电力碳排放量预测方法

用户侧电力碳排放量预测方法

扫码查看
为了帮助电力行业分摊碳排放责任,优化碳减排策略,研究了用户侧电力相关碳排放预测方法。按照先预测用电量,再根据电碳转换换算的方法实现用户侧电力相关碳排放的预测。其中,用户的用电量预测是核心。设计一种多模态嵌入的循环神经网络,考虑用电量的多重影响因素,建模用电序列的短期依赖关系;提出一种历史注意力机制,考虑用户用电习惯的周期性特点,捕获用电序列中的周期性因素。实验结果表明,上述方法的用电量预测结果性能明显地优于一些常用的用电量预测方法,有助于用户侧电力相关碳排放的准确预测。
Prediction Method for Carbon Emissions of Power on User Side
In order to help the power industry apportion the responsibility of carbon emissions and optimize the carbon emission reduction strategy,the prediction of carbon emissions related to power on the user side was studied.According to the method of predicting the power consumption first and then the electric carbon conversion,the carbon emission related to the user side can be predicted.The power consumption prediction of users is the core.A multi-modal embedded recurrent neural network was designed to model the short-term dependence of power consumption sequence considering the multiple influencing factors of power consumption;A historical attention mechanism was pro-posed to capture the periodicity factors in the power consumption sequence by considering the periodicity of users'power consumption habits.The experimental results show that the performance of the proposed method is significantly better than that of some commonly used power consumption prediction methods,which is helpful for the accurate pre-diction of power-related carbon emissions on the user side.

User sideCarbon emissionPower consumption predictionRecurrent neural networkAttention mech-anismPeriodicity

张禄、严嘉慧、王立永、李香龙

展开 >

国网北京市电力公司电力科学研究院,北京 100075

用户侧 碳排放 用电量预测 循环神经网络 注意力机制 周期性

国网北京市电力公司科技项目

20223220005

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(9)
  • 4