首页|时序数据缺失值插补方法研究与实现

时序数据缺失值插补方法研究与实现

扫码查看
传统时序缺失数据插补算法的稳定性低,且插补后的数据误差性大,无法保证插补后数据集的真实性;为此,提出一种基于改进的GAIN网络数据插补算法,通过融合Wasserstein判式,构建出GAIN-W时序数据缺失值插补模型。模型包含特征图提取、生成器组成与判别器构建三个模块;模块一,通过数据降维与标准化处理的方式提高数据的可操作性,并基于RW滑窗法提取时序数据的双通道二维特征;模块二,采用二维卷积层替代生成器的全连接层,提升不均匀间隔特征处理的准确性,并通过增加超参数λ,优化生成器的损失函数;模块三,基于三组全连接层解决判别器梯度爆炸的问题,并利用Was-serstein判式,学习数据分布并完成数据插补。仿真结果表明,在HEPC和BJPM2。5 公开数据集中,与 6 类基线算法相比,GAIN-W算法插补处理后的数据集RMSE误差平均优化降低了47。00%,MAX误差平均缩减了24。00%,表明GAIN-W算法具有较高的精确性与稳定性。综上所述,GAIN-W轨迹时序数据缺失值插补算法解决了时序不均匀的问题,且降低了插补数据的误差,具有重要的仿真研究价值。
Research and Implementation of Missing Value Interpolation for Time Series Data
The traditional interpolation algorithm for missing data in time series has low stability,and the error of the interpolated data is large,which can not guarantee the authenticity of the interpolated data set.Therefore,this pa-per proposes an improved interpolation algorithm based on GAIN network data,and constructs a GAIN-W interpolation model for missing data in time series by fusing Wasserstein discriminant.The first module improves the operability of the data through data dimension reduction and standardization processing,and extracts the double-chan-nel two-dimensional characteristics of the time series data based on an RW sliding window method.The second mod-ule uses a two-dimensional convolution layer to replace the fully connected layer of the generator,so as to improve the accuracy of uneven interval feature processing,and optimize the loss function of the generator by increasing the hyper-parameter λ.The third module solves the problem of gradient explosion of the discriminator based on three groups of fully connected layers,and uses Wasserstein discriminant to learn data distribution and complete data interpolation.Simulation results show that the average RMSE error of GAIN-W is reduced by 47.00% and the average MAX error is reduced by 24.00% compared with six baseline algorithms in HEPC and BJPM2.5 open data sets,which indicates that the GAIN-W algorithm has high accuracy and stability.To sum up,the GAIN-W trajectory missing data interpolation algorithm solves the problem of uneven timing and reduces the error of interpolation data,which has im-portant simulation research value.

DiscriminantTime series dataMissing data interpolation

阿如娜、刘利民

展开 >

内蒙古师范大学,内蒙古 呼和浩特 010051

内蒙古工业大学数据科学与应用学院,内蒙古 呼和浩特 010051

判式 时序数据 缺失数据插补

2016年内蒙古自治区高等学校科学研究项目教育部中国高校产学研创新基金

NJSY163862021RYA02003

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(9)