低时延网络多路通信数据无冲突调度仿真
Simulation of Collision Free Scheduling for Multi-Channel Communication Data in Low Delay Networks
郝聪妙 1孟晓丽 2王辉3
作者信息
- 1. 郑州工业应用技术学院计算机学院,河南 郑州 450000
- 2. 西安外事学院工学院,陕西 西安 710077
- 3. 西安工业大学计算机科学与工程学院,陕西 西安 710021
- 折叠
摘要
随着信息传播数据量的飞速增长,以及低时延网络的广泛应用,低时延网络无冲突调度的需求也进一步增加.为解决当前通信调度算法时效性差、调度效果不佳等问题,提出了基于强化学习演员-评论家算法的无冲突调度模型.模型首先对低时延网络架构进行分析,并对状态空间中的多路通信网络进行数据监测;然后基于受限制的马尔科夫决策对其进行无冲突调度,并基于贝尔曼方程计算结果进行策略调度;最后使用强化学习中的Actor-Critic算法对调度算法进行优化,通过Actor提出调度方案,通过Critic评价调度情况,进而达到无冲突调度的效果.实验结果表明,所提算法将冲突率降低了8.72%,将吞吐率提升了 7.58%,降低了数据在传输过程中丢失和乱码的概率,提高了通信数据的传输效率.
Abstract
With the rapid growth of information dissemination data and the widespread application of low-latency networks,the demand for conflict-free scheduling for low-latency networks has further increased.In order to address the issues of poor effectiveness and scheduling effectiveness of current communication scheduling algorithms,this paper proposes a conflict-free scheduling model based on the Actor-Critic algorithm in reinforcement learning.This model first analyzes the low-latency network architecture and monitors the data of multi-channel communication net-works in the state space.Then,based on the constrained Markov decision,conflict-free scheduling is performed,and the scheduling strategy is calculated based on the Bellman equation.Finally,the Actor-Critical algorithm in reinforce-ment learning is used to optimize the scheduling algorithm.The Actor is used to propose a scheduling plan,and Criti-cal is used to evaluate the scheduling situation,thereby achieving the effect of conflict-free scheduling.The experi-mental results show that the algorithm proposed in this article reduces the conflict rate by 8.72%,increases the throughput rate by 7.58%,reduces the probability of data loss and garbled code during transmission,and improves the transmission efficiency of communication data.
关键词
无冲突调度/低时延网络/强化学习/多路通信数据Key words
Conflict-free scheduling/Low latency network/Reinforcement learning/Multi-channel communication data引用本文复制引用
基金项目
教育部产学合作协同育人项目(221005812103741)
出版年
2024