首页|基于机器视觉的红外目标抗干扰识别算法

基于机器视觉的红外目标抗干扰识别算法

扫码查看
复杂空战中人工诱饵数量多,易对实际目标造成遮挡、粘黏等现象,导致红外目标检测准确率低且稳定性差。为解决上述问题,将特征融合算法与自适应Yolov3 目标检测算法有机融合,并通过形状相似性提升目标提取率,最终构建出DFE-YOL-3 红外目标抗干扰检测模型。模型首先采用中值滤波算法与方图均衡算法对原始图像进行降噪优化处理,提高图像目标的可识别度;然后分别提取并融合红外图像的灰度共生G特征与直方图H特征,构建融合特征向量,提升图像检测的可行性;接着采用DBSACAN形状聚类算法检测提高红外小目标的检测准确率,并基于融合特征,自适应计算IOU阈值;最终通过优化红外目标位置的损失函数,完成目标回归框构建。实验模型的仿真结果表明,在IACD红外空战仿真数据上,与其它传统红外目标抗干扰检测算法相比,DFE-YOL-3 算法的准确率最高,达 94。38%,平均提升了 5。68%;召回率亦最高,达93。62%,平均提高了4。10%,即DFE-YOL-3 算法具有较高的准确性与稳定性。同时DFE-YOL-3 算法具有较好的建模时效性与检测时效性。综上,DFE-YOL-3 算法解决了人工诱饵的遮挡、粘黏问题,有效的提升了红外目标抗干扰检测的准确率与稳定率,具有一定的仿真应用价值。
Anti-jamming Recognition Algorithm of Infrared Target Based on Machine Vision
In complex air combat,the number of artificial decoys is large,which makes it easy to cause occlusion and stickiness to the actual target,resulting in low accuracy and poor stability of infrared target detection.In order to solve the above problems,the feature fusion algorithm and the adaptive Yolov3 target detection algorithm are organi-cally fused,and the target extraction rate is improved by shape similarity,and finally,the DFE-YOL-3 infrared target anti-jamming detection model is constructed.In this model,the median filtering algorithm and histogram equalization algorithm are used to denoise the original image to improve the recognition of the image target,and then the gray co-occurrence G feature and histogram H feature of the infrared image are extracted and fused respectively to construct the fusion feature vector,which improves the feasibility of image detection.Then the DBSACAN shape clustering algo-rithm is used to improve the detection accuracy of infrared small targets,and the IOU threshold is adaptively calculat-ed based on the fusion features.Finally,the target regression box is constructed by optimizing the loss function of the infrared target position.The simulation results of the experimental model show that the accuracy of the DFE-YOL-3 algorithm is the highest,up to 94.38%,with an average increase of 5.68% compared with other traditional infrared anti-jamming detection algorithms on the IACD infrared air combat simulation data.The recall rate of the DFE-YOL-3 algorithm is also the highest,which is 93.62%,and the average increase is 4.10%,that is to say,the DFE-YOL-3 algorithm has high accuracy and stability.At the same time,the DFE-YOL-3 algorithm has good modeling timeliness and detection timeliness.To sum up,the DFE-YOL-3 algorithm solves the problem of artificial decoy oc-clusion and stickiness,effectively improves the accuracy and stability of infrared target anti-jamming detection,and has a certain simulation application value.

Machine visionShape clustering algorithmInfrared target anti-jamming detection

李爱华、彭凌西

展开 >

四川工商学院计算机学院,四川 成都 620000

广州大学 机械与电气工程学院,广东 广州 510006

机器视觉 形状聚类算法 红外目标抗干扰检测

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(9)