计算机仿真2024,Vol.41Issue(11) :58-62,379.

基于遗传粒子群算法的停机位分配问题研究

Research on Aircraft stands Assignment Problem Based on Genetic Particle Swarm Algorithm

向征 储同 周鼎凯 孙赫阳
计算机仿真2024,Vol.41Issue(11) :58-62,379.

基于遗传粒子群算法的停机位分配问题研究

Research on Aircraft stands Assignment Problem Based on Genetic Particle Swarm Algorithm

向征 1储同 1周鼎凯 1孙赫阳1
扫码查看

作者信息

  • 1. 中国民用航空飞行学院空中交通管理学院,四川 广汉 618307
  • 折叠

摘要

为保证机场停机位资源的合理分配和高效利用,通过分析停机位分配过程中的安全运行规则,考虑了以航空器机位大小匹配、同一机位和相邻机位安全时间间隔等约束条件,建立了最小化远机位数量和最小化近机位空闲时间的多目标优化模型.提出了一种将遗传算法(GA)和粒子群算法(PSO)优势相结合的遗传粒子群算法(GAPSO),同时改进了自适应度对粒子速度的更新限制,提供了一种新的停机位分配与优化思路.仿真结果表明,GAPSO算法在远机位分配数量和近机位的空闲时间方面表现更优,同时还展现出更快的收敛速度和更强的全局寻优能力,从而提高航空运输的效率,对机场管理和停机位资源分配具有实际意义.

Abstract

In order to ensure the rational allocation and efficient utilization of airport apron resources,this study analyzes the safety operational rules in the apron allocation process.It considers constraints such as matching aircraft stand sizes,safety time intervals between the same apron and adjacent aprons.A multi-objective optimization model is developed to minimize the number of remote aprons and minimize the idle time of nearby aprons.A novel approach to apron allocation and optimization is proposed,combining the advantages of Genetic Algorithm(GA)and Particle Swarm Optimization(PSO)into a Genetic Particle Swarm Optimization(GAPSO)algorithm.The adaptive limitation on the particle velocity update is also improved.The simulation results demonstrate that the GAPSO algorithm performs better in terms of remote apron allocation and idle time of nearby aprons.It exhibits faster convergence speed and stronger global optimization ability,thereby enhancing the efficiency of aviation transportation and providing practical significance to airport management and apron resource allocation.

关键词

停机位分配/遗传粒子群算法/机位匹配/混合算法

Key words

Aircraft stands assignment/Genetic-particle swarm optimization/Aircraft position match/Hybrid algo-rithm

引用本文复制引用

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
段落导航相关论文