首页|基于梅尔滤波器的变电站开关故障监测仿真

基于梅尔滤波器的变电站开关故障监测仿真

扫码查看
变电站开关故障的信号特征范围较大,存在混淆与特征不清晰的问题。提出基于声音信号的变电站开关故障状态监测方法。利用概率密度函数计算变电站开关设备的异常运行概率,确定重点监测的开关设备;对变电站开关设备信号展开预加重与分帧处理,建立梅尔滤波器提取变电站开关设备信号的MFCC特征;将MFCC特征输入学习矢量神经网络(LVQ)中输出故障状态监测结果,同时引入回溯搜索算法优化学习矢量神经网络的初始权重,实现变电站开关故障状态监测。仿真结果表明:所提方法具有良好的故障状态监测效果。
Simulation of Substation Switch Fault Monitoring Based on Mel Filter
The signal characteristics of substation switch faults have a wide range,and there are problems of con-fusion and unclear characteristics.This paper presents a method of monitoring substation switch fault conditions based on sound signals.The probability density function is used to calculate the abnormal operation probability of substation switchgear and determine the key monitoring switchgear.Pre-emphasis and frame processing are carried out for sub-station switchgear signals,and a Mel filter is established to extract MFCC features of substation switchgear signals.MFCC features are input into the learning vector neural network(LVQ)to output the fault state monitoring results,and a backtracking search algorithm is introduced to optimize the initial weight of the learning vector neural network to a-chieve the substation switch fault state monitoring.The simulation results show that the proposed method has good fault condition monitoring effect.

Substation switchProbability density functionLearning vector neural networkMeier filterFault condition monitoring

廖华、申晓杰、潘勇斌、陈磊

展开 >

中国南方电网有限责任公司超高压输电公司南宁监控中心,广西 南宁 530001

变电站开关 概率密度函数 学习矢量神经网络 梅尔滤波器 故障状态监测

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)