首页|基于RRPNN-CEEMD-BiLSTM的短期电力负荷预测

基于RRPNN-CEEMD-BiLSTM的短期电力负荷预测

扫码查看
随着低碳经济的不断发展,准确的电力负荷预测对于能源管理至关重要。为了提高电力负荷短期预测的准确度,提出基于改进的岭多项式神经网络(RRPNN)、互补集合经验模态分解(CEEMD)和双向长短期记忆网络(BiLSTM)的短期电力负荷预测。首先通过自回归输入调整RRPNN的输出精度,实现快速处理非线性负荷数据并实现初始预测。然后,通过CEEMD和BiLSTM方法,减少模态混叠和模态间的相互影响,从而获得准确的模态分量预测结果。最后,以某地区实际电网负荷为例,进行仿真验证。通过验证可知,与RRPNN-BiLSTM、CEEMD-BiLSTM、RRPNN-PSO-BiLSTM等其它模型相比,RRPNN-CEEMD-BiLSTM模型能够有效实现短期电力负荷的精确预测,具备较高的负荷预测精度。
Short-Term Power Load Forecasting Based on RRPNN-CEEMD-BiLSTM Model
With the continuous development of low-carbon economy,accurate power load forecasting is crucial for energy management.To improve the accuracy of short-term power load forecasting,short-term power load forecasting based on an improved ridge polynomial neural network(RRPNN),complementary ensemble empirical modal decom-position(CEEMD)and bi-directional long short-term memory network(BiLSTM)is proposed.Firstly,the output ac-curacy of the RRPNN is adjusted by autoregressive inputs to enable fast processing of non-linear load data and to a-chieve initial forecasts.Then,the CEEMD and BiLSTM methods are used to reduce modal confounding and inter-mo-dal interactions to obtain accurate modal component forecasting results.Finally,a simulation test is carried out to veri-fy the actual grid load in a region as an example.The experimental validation shows that the RRPNN-CEEMD-BiL-STM model can effectively achieve accurate short-term power load forecasting with high load forecasting accuracy compared with other models such as RRPNN-BiLSTM,CEEMD-BiLSTM and RRPNN-PSO-BiLSTM.

Short-term load forecastingRidge polynomial neural networksEmpirical modal decompositionBidi-rectional long and short term memory networks

魏晓宾、焦丕华、胡钰业、于洋

展开 >

山东理工大学电气与电子工程学院,山东 淄博 255000

山东德佑电气股份有限公司,山东 淄博 255000

短期负荷预测 岭多项式神经网络 互补集合经验模态分解 双向长短期记忆网络

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)