首页|基于数据空间的电力工程物资需求预测

基于数据空间的电力工程物资需求预测

扫码查看
精确的物资需求预测有助于企业制定科学的采购策略,减少采购成本,是物资采购管理工作中的重要环节。影响电力工程物资需求的因素较多,且分属于不同部门。企业各部门之间缺乏协作,形成严重的"数据孤岛"现象,导致采购部门很难跨部门挖掘数据价值。同时,企业进行年度物资需求预测时,可用样本量少,效果欠佳。为此构建了电力工程物资数据空间整合多部门数据,通过自然语言处理挖掘文本型数据中的重要信息;采用树模型,从工程项目角度出发探索数据之间的潜在联系,扩大样本量,提高项目层面的物资需求预测精度。研究表明,所提预测方案的准确率提高了30 个百分点,比现有方法更稳定,为物资管理提供了有效的决策支持。
Prediction of Material Demand for Power Engineering Based on Data Space
Accurate material demand prediction assists the material management department in developing accurate procurement strategies to reduce costs.However,there are many factors that affect the demand of power engi-neering material,and these data belong to different departments.The lack of collaboration between these departments has formed a serious"Data Silo"phenomenon.At the same time,the sample size is small and the influencing factors considered are not comprehensive when enterprises predict the total annual demand for power engineering materials,which makes the results underperform.This paper builds a power engineering material Data space integrating the value of data from multiple departments,explores important information intext-based data through Natural Language Processing,and applies tree models to explore the potential connection between multi-source heterogeneous data from an engineering project perspective to predict the material demand of power engineering accurately.The research results show that the prediction accuracy of the proposed model in this paper is improved by 30percent,which is more stable than the bench model and its current practice.It provides effective decision-making support for the case company's material management.

Demand prediction of power engineering materialData spaceTree models

杨迪、王辉、刘达、张依依

展开 >

新能源电力与低碳发展研究北京市重点实验室,北京 102206

华北电力大学经济与管理学院,北京 102206

电力工程物资需求预测 数据空间 树模型

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)