首页|特高压直流一次设备运行状态k-means聚类监测仿真

特高压直流一次设备运行状态k-means聚类监测仿真

扫码查看
针对特高压直流一次设备运行状态异常可能导致电网运行不稳定的问题,提出特高压直流一次设备运行状态监测方法,并进行仿真分析。首先构建基于能量均衡的动态分簇算法,控制无线传感器网络采集特高压直流一次设备运行状态数据,利用k-means算法动态分簇,通过竞争函数和能量比平衡各簇能量,并在簇中划分节点为不同等级节点,高效采集一次设备运行状态数据。采用改进的稀疏主成分分析法选择采集到的一次设备运行状态数据关键特征,最后将特征选择后运行状态数据输入至训练完成的BP神经网络中,实现特高压直流一次设备运行状态监测。实验结果表明:所提方法具有优异的数据采集能力,并且运行状态监测中的PR曲线和ROC曲线更为理想,同时AUC值更高。
K-Means Clustering Monitoring Simulation of Operating Status of Ultra-High Voltage Direct Current Primary Equipment
Aiming at the problem that abnormal operation status of UHVDC primary equipment may lead to un-stable operation of power grid,a monitoring method for operation status of UHVDC primary equipment is proposed and simulated.First,a dynamic clustering algorithm based on energy balance is constructed to control the wireless sensor network to collect the operating status data of the UHVDC primary equipment.The k-means algorithm is used to dy-namically cluster,balance the energy of each cluster through the competition function and energy ratio,and divide the nodes in the cluster into nodes of different levels to efficiently collect the operating status data of the primary equip-ment.The improved sparse principal component analysis method is used to select the key features of the primary e-quipment operation status data collected,and finally the operation status data after feature selection is input into the BP neural network after training to realize the operation status monitoring of UHVDC primary equipment.The experi-mental results show that the proposed method has excellent data acquisition capability,and the PR curve and ROC curve in operation state monitoring are more ideal,and the AUC value is higher.

Ultra high voltage direct currentPrimary equipmentOperation status monitoringSparse principal component analysis methodBack Propagation neural network

宗万里、黄燕燕、罗志恒

展开 >

国网浙江省电力有限公司超高压分公司,浙江 杭州 311100

北京华电云通电力技术有限公司,湖南 长沙 410221

特高压直流 一次设备 运行状态监测 稀疏主成分分析法 BP神经网络

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)