首页|基于LDA模型的地铁施工安全事故聚类研究

基于LDA模型的地铁施工安全事故聚类研究

扫码查看
隐含狄利克雷分布(LDA)在文本数据挖掘、图像处理、生物信息处理等领域被广泛应用,但在地铁工程中应用较少。针对地铁施工安全事故分类精度和效率不高的问题,提出一种基于LDA主题模型的聚类算法,利用PYTHON 3。6 编程来实现安全事故案例数据预处理、建模、可视化、模型优化和聚类分析,融入面向地铁施工安全事故的分类词典,实现对工程安全事故的准确分类。通过获取以功能性能和接口等需求为导向的隐含主题,有效提高地铁施工安全事故分类的准确度。
Research on Clustering of Subway Construction Safety Accidents Based on LDA Model
The Hidden Dirichlet Distribution(LDA)is widely used in fields such as text data mining,image pro-cessing,and bioinformatics processing,but its application in subway engineering is relatively limited.A clustering al-gorithm based on LDA topic model is proposed to address the problem of low accuracy and efficiency in classifying safety accidents in subway construction,PYTHON 3.6 programming is used to realize the visualization model optimi-zation and cluster analysis of safety accident case data preprocessing modeling,and the classification dictionary for subway construction safety accidents is integrated to realize the accurate classification of engineering safety accidents The accuracy of subway construction safety accident classification can be effectively improved by obtaining the hidden topics oriented by the requirements of function performance and interface.

Subway constructionAccident classificationProgrammingCluster analysisaccuracy

许又文、严心娥、郭亮、季日臣

展开 >

陕西高校轨道交通未来产业创新研究院,陕西 西安 710300

西安交通工程学院,陕西 西安 710300

机械工业勘察设计研究院有限公司,陕西 西安 710021

兰州交通大学 土木工程学院,甘肃 兰州 730070

展开 >

地铁施工 事故分类 编程 聚类分析 准确度

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)