首页|基于GCA-YOLOv5s的行人检测算法

基于GCA-YOLOv5s的行人检测算法

扫码查看
针对智能网联汽车行人目标检测准确性和实时性较低等问题,提出了一种基于YOLOv5s改进的行人检测算法。首先,采用幻影模块替代传统卷积,在保证模型准确度的前提下,降低模型复杂度,从而提高模型实时性。然后,将坐标注意力模块引入特征提取网络获得重要特征,提升行人检测准确性。最后,针对损失函数计算的弊端改进边界框损失函数的计算方式,在现有损失函数中引入power变换,以获得更高的边界框回归精度。实验结果表明,使用改进模型在Widerperson数据集上进行实验mAP达到70。8%,相较原算法提升2。6%,检测速度达 61FPS。所提算法较主流算法准确率和检测速度均有所提升。
Pedestrian Detection Algorithm Based on GCA-YOLOv5s
A pedestrian detection algorithm based on YOLOv5s improvement is proposed to address the issues of low accuracy and real-time performance in intelligent connected vehicle pedestrian target detection.First,the phantom module is used instead of the traditional convolution to reduce the model complexity while ensuring the model accuracy,thus improving the model real-time.Then,the coordinate attention module is introduced into the fea-ture extraction network to obtain important features and improve the pedestrian detection accuracy.Finally,the calcu-lation of the bounding box loss function is improved to address the drawbacks of the loss function calculation,and the power transform is introduced into the existing loss function to obtain higher accuracy of the bounding box regression.The experimental results show that the experimental mAP using this improved model on the Widerperson dataset rea-ches 70.8%,which is a 2.6%improvement compared to the original algorithm,and the detection speed reaches 61 FPS.The proposed algorithm improves both accuracy and detection speed compared to the mainstream algorithm.

Object detectionCoordinate attention(CA)Pedestrian detectionDeep learning

张求星、杨芳华、李峰、赵李萍

展开 >

军事科学院系统工程研究院,北京 100166

目标检测 坐标注意力 行人检测 深度学习

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)