首页|基于AHP的多特征融合图像质量评价算法

基于AHP的多特征融合图像质量评价算法

扫码查看
针对图像质量评价算法通用性不高的问题,在提取参考图像与失真图像的多种底层特征的基础上,计算各个特征在原图和失真图之间的相似度,结合AHP(Analytic Hierarchy Process)模型提出多特征融合的图像质量评价算法(Multi Feature Image Quality Assessment,MFIQA)。针对参考图像与失真图像分别提取图像特征并计算颜色、主体形状、局部特征和纹理细节相似度,根据图像类型和应用场景的不同,通过AHP建立对应的权重分配模型,将相似度数值归一化后代入模型中,最终得到量化的质量分数。在TID2008 数据集上,该算法在KROCC上的表现相较于PSNR获得了7。3%的提升,相较于SSIM获得了 3。5%的提升;在TID2013 数据集上,该算法在RMSE上的表现相较于SSIM获得了17。9%的提升,相较于PSNR获得了5。4%的提升。在TID2008 和TID2013 数据集上的实验表明,文中算法的主客观一致性表现较好。
Multi Feature Fusion Image Quality Evaluation Algorithm Based on AHP
In response to the problem of low universality of image quality evaluation algorithms,a Multi Feature Image Quality Assessment(MFIQA)algorithm is proposed by extracting multiple underlying features of reference and distorted images,calculating the similarity between each feature in the original and distorted images,and combining the Analytic Hierarchy Process(AHP)model.For the reference image and the distorted image,the image features are extracted and the similarity of color,body shape,local features and texture details is calculated.According to the dif-ferent image types and application scenarios,the corresponding weight distribution model is established through AHP,and the similarity value is normalized into the model,and finally the quantized quality score is obtained.On the TID2008 dataset,the performance of the algorithm on KROCC has been improved by 7.3%compared with PSNR and 3.5%compared with SSIM;On the TID2013 dataset,the performance of the algorithm on RMSE has been improved by 17.9%compared with SSIM and 5.4%compared with PSNR.The experiments on TID2008 and TID2013 data sets show that the subjective and objective consistency of the algorithm in this paper is good.

Image quality evaluationFeature extractionMulti-feature fusionFull referenceVisual perception characteristics

沈凡凡、刘海鹏、徐超、陈勇

展开 >

南京审计大学计算机学院,江苏 南京 211815

图像质量评价 特征提取 多特征融合 全参考 视觉感知特性

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)