首页|非均衡负载边缘计算资源调度策略优化方法

非均衡负载边缘计算资源调度策略优化方法

扫码查看
目前常见的云边协同计算架构中容易因为负载分布不均出现任务时延难以满足需求、云平台资源调度动作频繁执行及网络与计算资源利用率低等问题。针对非均衡特征计算负载的特点和需求场景,提出一种应用趋势移动平均算法及整合LSTM网络的深度强化学习云边协同计算卸载方法MA-LSTM-DQN。通过仿真环境下使用运营商边缘计算负载模拟实验测试结果表明,所提出的方法在非均衡负载应用场景下较基准比较方法平均计算请求处理时延缩短 17%,平台资源调度切换动作频次下降40%左右,综合性能指标有明显提升。
Research on Optimization Method of Resource Scheduling Strategy for Unbalanced Load Edge Computing
Currently,common cloud edge collaborative computing architectures are prone to problems such as dif-ficulty in meeting task latency requirements due to uneven load distribution,frequent execution of cloud platform re-source scheduling actions,and low utilization of network and computing resources.Aiming at the characteristics and demand scenarios of unbalanced feature computing load,a deep reinforcement learning cloud edge collaborative com-puting offloading method MA-LSTM-DQN is proposed,which applies trend moving average algorithm and integrates LSTM network.The simulation experiment of the simulation environment and the test results of the actual operator's edge computing load application scenario show that the proposed unloading decision method in the unbalance compu-ting load application scenario decrease the processing delay by 17%and scheduling frequency by about 40%,and im-proves the overall performance index to a certain extent.

Mobile edge computingResource schedulingReinforcement learningMDPComputing offloading

宋苗、章鹏、李发陵

展开 >

重庆工程学院,重庆 400056

重庆星网网络系统研究院有限公司,重庆 401135

移动边缘计算 资源调度 强化学习 马尔科夫决策过程 计算卸载

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)