首页|改进Unet与ConvCRF的HRRSI建筑物提取方法

改进Unet与ConvCRF的HRRSI建筑物提取方法

扫码查看
针对高分遥感影像中场景复杂导致建筑物边缘分割较差的问题,提出一种改进Unet与ConvCRF相结合的建筑物提取方法。通过residual-block残差卷积结构替换Unet网络当中的普通卷积运算,并在Unet低感受野编码与解码阶段引入了CBAM(Convolution Block Attention Module)卷积注意力模块,以提高模型对于建筑物边缘的提取精度。同时衔接ConvCRF模块进行分离模型训练,以减少分割结果边缘锯齿的产生,消除噪声,拟合建筑物真实轮廓。实验结果表明,改进Unet神经网络在分割效果及精度上优于经典的语义分割算法;ConvCRF分离式模型能够有效消除噪点并减少边缘锯齿的产生。
HRRSI Building Extraction Method Based on Improved Unet and ConvCRF
Aiming at the problem of poor building edge segmentation caused by complex scenes in high-resolution remote sensing images,an improved building extraction method combining Unet and ConvCRF is proposed.The ordi-nary convolution operation in unet is replaced by the residual-block residual convolution structure,and Convolution Block Attention Module(CBAM)convolutional attention module is introduced in the low receptive field encoding and decoding stage of Unet to improve the model's ability to deal with building edges.extraction accuracy.At the same time,the ConvCRF module is connected to train the separation model to reduce the generation of jagged edges in the segmentation results,eliminate noise,and fit the real outline of the building.The experimental results show that the improved Unet neural network is superior to the classical semantic segmentation algorithm in segmentation effect and accuracy;the ConvCRF separation model can effectively eliminate noise and Reduces edge jaggedness.

BuildingsRemote sensing imagesDeep learningConditional random fields

邢云飞、李昊、郝戍峰、武琴琴

展开 >

太原理工大学计算机科学与技术学院(大数据学院),山西 晋中 030600

都柏林大学,爱尔兰 都柏林 D04 V1W8

吕梁市水利局,山西 吕梁 033000

建筑物 遥感影像 深度学习 条件随机场

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)