首页|改进GoogLeNet的自然场景图像多标记分类仿真

改进GoogLeNet的自然场景图像多标记分类仿真

扫码查看
为了提升自然场景图像多标记分类结果的准确性,提出一种改进GoogLeNet的自然场景图像多标记分类方法.通过自适应引导滤波算法中的加权最小二乘滤波器建立引导图像,修改已有的引导滤波,加入梯度值偏移量展开像素值自适应,突出自然场景图像的边缘部分,实现自然场景图像细节增强.根据自然场景图像的特点,建立自然场景图像多标记类别库,改进GoogLeNet网络结构,将全部图像输入到不同GoogLeNet模型内,最终实现自然场景图像多标记分类.实验测试结果表明,采用所提方法可以有效提升自然场景图像多标记分类结果的准确性和分类效率.
Simulation of Multi Label Classification of Natural Scene Images with Improved GoogLeNet
In order to improve the accuracy of multi-label classification for natural scene images,this paper pres-ented a multi-label classification method for natural scene images based on improved GoogLeNet.At first,a boot im-age was constructed by the weighted least squares filter in the adaptive guided filter algorithm,and then the existing filter was modified.Moreover,the gradient offset was added to carry out the pixel adaptation and highlight the edge of the natural scene image,thus realizing the detail enhancement.Based on the characteristics of natural scene image,a multi-label category library of natural scene images was constructed to improve the structure of GoogLeNet network.After that,all images were input into different GoogLeNet models.Finally,the multi-label classification for natural scene images was achieved.The experimental results show that the proposed method can effectively improve the accu-racy and classification efficiency of multi-label classification result of natural scene image.

Natural scene imageMulti-label classificationImage enhancement

徐岸峰、黄学彬、王波

展开 >

海南热带海洋学院海岛旅游资源数据挖掘与监测预警技术文化和旅游部重点实验室,海南 三亚 572022

哈尔滨理工大学自动化学院,黑龙江 哈尔滨 150080

自然场景图像 多标记分类 图像增强

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)