首页|基于印刷体监督的手写维文识别方法

基于印刷体监督的手写维文识别方法

扫码查看
手写维吾尔文字图像数据集匮乏及手写文本难于分割识别问题,提出了一种基于印刷体监督的手写维文识别模型。模型将文字和印刷体文字图片同时作为标签,在训练时将两种文字图像并行输入到CNN中提取特征,而后将特征分别输入至识别分支进行识别任务、输入至匹配分支进行图片匹配任务,预测时将特征输入到BiLSTM编码器中得到序列特征,最后通过CTC得到识别结果。所提方法可生成充裕有效的手写文字图像,且在真实手写维文测试集上相较于基准模型CER降低5。03%,在IAM上也证明了模型迁移性。实验结果表明,提出的方法能够有效缓解手写维文文字图像数据集匮乏问题,模型能充分挖掘印刷体文字图像的特征作为手写体文字识别的监督信息来提高识别效果。
Handwritten Uyghur Text Recognition Method Based on Printed Text Images Supervision
A handwritten Uyghur character image dataset is scarce and handwritten text is difficult to segment and recognize.A handwritten Uyghur character recognition model based on Printed text image Supervision(PSnet)was proposed.This model regards text and printed text images as labels,and during the training phase they are put into Convolutional Neural Network(CNN)to extract features in a parallel way.Then the features are put into recognition task and match task at the same time.During the testing phase,the features are put into BiLSTM encoder to acquire per frame prediction.Finally the Connectionist Temporal Classification(CTC)decoder is used to obtain the final pre-diction result.The experiment results show that the method is able to generate plenty of effective handwritten text ima-ges and PSnet gets accuracy of 0.44%and 5.1%CER on seen and unseen fonts test datasets,and gets 19%CER which reduces by 5.03%on artificial handwritten test datasets compared to other base models.The results implicate the method can relieve the data rarity and utilize the printed text images features to assist handwritten Uyghur recogni-tion.

Handwritten Uyghur text recognitionImage retrievalConvolutional neural network(CNN)Long short-term memory model(LSTM)Connectionist temporal classification(CTC)Segment-free

闫林、王磊、艾孜麦提·艾尼瓦尔、杨雅婷

展开 >

中国科学院新疆理化技术研究所,新疆 乌鲁木齐 830011

中国科学院大学,北京 100049

新疆民族语音语言信息处理实验室,新疆 乌鲁木齐 830011

手写维文识别 图片匹配 卷积神经网络 长短期记忆网络 连接时序分类 免分割

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)