首页|智能艾灸设备的精准控温方法

智能艾灸设备的精准控温方法

扫码查看
针对艾灸设备模拟灸疗过程中常存在温度控制不精确、过渡时间长、超调大、参数整定复杂等现象,提出一种基于改进模糊神经网络的PID参数自整定算法。在模糊神经网络参数优化方面作出探索与研究,在改进遗传算法中引入梯度法迭代,综合两者的优点,提出一种适用于模糊神经网络的混合学习算法。仿真与训练结果表明,提出的混合学习算法可很好地完成网络训练,同时与传统的BP算法进行比较,证实了混合学习算法的优势;有关所建立的模糊神经网络PID控制系统的仿真表明其具有超调小、过渡时间短、响应迅速等特点,为艾灸设备实现多种灸法的精准控温提供了参考。
Accurate Temperature Control Method for Intelligent Moxibustion Equipment
In order to solve the problems of imprecise temperature control,long transition time,large overshoot and complex parameter setting in the process of moxibustion treatment simulated by moxibustion equipment,this paper proposes a PID parameter self-tuning algorithm based on improved fuzzy neural network.This paper explores the pa-rameter optimization of fuzzy neural networks,introduces the gradient method iteration in the improved genetic algo-rithm,synthesizes the advantages of both,and proposes a hybrid learning algorithm for fuzzy neural networks.Simula-tion and training results show that the hybrid learning algorithm proposed in this paper can complete network training well,and the advantages of the hybrid learning algorithm are verified by comparing it with the traditional BP algorithm.The simulation of the fuzzy neural network PID control system established in this paper shows that it has the characteristics of small overshoot,short transition time and rapid response,which provides a reference for moxibus-tion equipment to realize accurate temperature control of various moxibustion methods.

Moxibustion deviceFuzzy neural controlGenetic algorithm

陈宗帅、尹柏凯、毛晓波、任海川

展开 >

郑州大学电气与信息工程学院,河南 郑州 450001

华中科技大学人工智能与自动化学院,湖北 武汉 430074

艾灸设备 模糊神经网络 遗传算法

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)