首页|融合混沌和差分变异的正余弦算术优化算法

融合混沌和差分变异的正余弦算术优化算法

扫码查看
针对算术优化算法初始种群质量差、收敛速度较慢以及后期容易陷入局部极值点等问题,提出一种融合混沌和差分变异的正余弦算术优化算法。引入混沌映射初始化种群,提高初始种群质量,加快算法收敛;结合算术优化算法和正余弦算法的优势,改进算法的个体迭代方式,平衡算法探索和开发能力;引入差分变异策略,提高算法跳出局部最优能力。使用 12 个测试函数对改进算法的性能进行对比分析,实验结果表明,改进算法的求解精度和收敛速度都优于对比算法,且具有更好的稳定性。最后,通过 2 个工程设计优化问题的仿真,进一步验证了改进算法在处理现实优化问题上的优越性。
A Sine Cosine Arithmetic Optimization Algorithm Based on Chaos and Differential Mutation
Aiming at the problems of poor initial population quality,slow convergence speed and easy to fall into local extremum in the later stage of arithmetic optimization algorithm,a sine-cosine arithmetic optimization algorithm that integrats chaos and differential mutation is proposed.Introducing chaotic maps to initialize the population,impro-ving the quality of the initial population,and accelerating algorithm convergence;Combining the advantages of the a-rithmetic optimization algorithm and the sine-cosine algorithm,improving the individual iteration method of the algo-rithm,and balancing the ability of algorithm exploration and development;Introduce the differential mutation strategy to improve the algorithm'ability to escape from local optima.Using 12 test functions to compare and analyze the per-formance of the improved algorithm,the experimental results show that the solution accuracy and convergence speed of the improved algorithm are better than those of the comparison algorithm,and it has better stability.Finally,through the simulation experiments of two engineering design optimization problems,the superiority of the improved algorithm in dealing with realistic optimization problems is further verified.

Sine cosine algorithmArithmetic optimization algorithmHybrid optimizationChaotic mappingDif-ferential mutation

邵彝君、朱良宽、付雪、仝柯

展开 >

东北林业大学机电工程学院,黑龙江 哈尔滨 150040

正余弦算法 算术优化算法 混合优化 混沌映射 差分变异

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)