首页|基于天牛须搜索算法的Q-learning路径优化方法

基于天牛须搜索算法的Q-learning路径优化方法

扫码查看
为更好地解决移动机器人路径规划问题,面对使用改进Q-learning算法规划的路径存在拐角数量多、累计转弯角度大等不足,提出一种基于天牛须搜索算法的Q-learning路径优化方法(IBQL)。在传统天牛须搜索算法的基础上,引入运动步长递减策略提升天牛的搜索效率;添加障碍物碰撞检测并改进适应度函数,保证路径的安全性;按照运动最优化原则更新路径点,以降低位置更新的盲目性。仿真结果表明,IBQL算法的路径规划效果优异,使用改进天牛须搜索算法优化路径对算法整体的实时性影响很小,且优化后的路径具有拐点少、平滑性好等优点。
Q-learning Path Optimization Method Based on Beetle Antennae Search Algorithm
In order to improve the path planning results of mobile robots and solve the problems of many corners and large cumulative turning angles in the path planned by the improved Q-learning algorithm,a Q-learning path op-timization method(IBQL)based on beetle antennae search algorithm is proposed.The IBQL algorithm mainly improves the beetle antennae search algorithm in three aspects.First,the step-decreasing strategy is introduced to im-prove the efficiency of beetle antennae search.Second,it adds obstacle collision detection and improves the fitness function to ensure the safety of the path.Third,the principle of motion optimization is used to update points on the path to reduce the blindness of position updates.Simulation results show that the path obtained by the IBQL algorithm is excellent and using the improved beetle antennae search algorithm to optimize the path has little impact on the o-verall real-time performance.The optimized path has advantages such as fewer turning points and good smoothness.

Beetle antennae searchPath optimizationMobile robotMotion optimization

安紫琦、黄珍、孟星兆

展开 >

武汉理工大学自动化学院,湖北 武汉 430070

天牛须搜索 路径优化 移动机器人 运动最优

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)