首页|基于贝叶斯网络的飞行员混沌脑电信号评估

基于贝叶斯网络的飞行员混沌脑电信号评估

扫码查看
面孔诱发的脑电信号与基函数迭代所构成离散动力系统是混沌的,导致现阶段针对脑电信号的飞行员疲劳评估,存在评估效果不佳等问题。对此,研究混沌脑电信号下的飞行员疲劳评估方法。首先,使用验模态分解的方法,对飞行员脑电信号展开去混沌化处理;然后,通过套袋-正则化空间模式方法,提取飞行员脑电信号特征向量;最后,输入飞行员脑电信号特征向量至隐马尔可夫模型(HMM)与贝叶斯网络结合模型中,完成飞行员疲劳评估。实验结果表明,所提方法的飞行员疲劳评估准确度在91。7%,飞行员疲劳误差在 1%~4%,获得了更准确的飞行员疲劳评估结果。
Evaluation of chaotic EEG signals in pilots based on Bayesian networks
The discrete dynamic system composed of facial evoked EEG signal and basis function iteration is cha-otic,which leads to the poor evaluation effect of pilot fatigue assessment for EEG signal at present.In this regard,the pilot fatigue assessment method under chaotic EEG signals is studied.Firstly,the pilot EEG signals are de-chaotized by using the empirical mode decomposition method.Then,the pilot EEG feature vectors are extracted by the bagging regularized spatial pattern method.Finally,the pilot EEG signal feature vector is input into the hidden Markov model(HMM)and Bayesian network combination model to complete the pilot fatigue assessment.The experimental results show that the accuracy of the pilot fatigue assessment of the proposed method is 91.7%,and the pilot fatigue error is 1%~4%.More accurate pilot fatigue assessment results are obtained.

Chaotic EEG signalsFatigue assessmentEmpirical modal decompositionBayesian networkMarkov chain

陈宇亮、李润平

展开 >

解放军总医院第六医学中心特勤科,北京 100048

海军军医大学潜水医学教研室,上海 200433

混沌脑电信号 疲劳评估 经验模态分解 贝叶斯网络 马尔可夫链

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)