首页|融合局部分块重构与线性回归的人脸识别仿真

融合局部分块重构与线性回归的人脸识别仿真

扫码查看
人脸特征与类别之间的关系往往是非线性的,特别是在光照、姿态等变化较大的情况下,导致线性模型难以捕捉面部的非线性微特征,导致最终的分类效果较差。为此,提出了局部分块重构的线性回归方法。分块处理特征提取后的样本;对包含特征能量较多的块训练样本集求解重构系数,通过增大特征能量较多的特征在线性重构中的比重,降低特征能量较少的比重,进而达到降噪效果;再将重构系数应用到整体类训练样本求得更加相似的重构样本,通过最大相似法对待测试样本进行类别判定。在 AR、CMU PIE、等人脸库上的实验表明,所提方法具有更好的分类效果。
Face Recognition Simulation Integrating Local Block Reconstruction and Linear Regression
The relationship between facial features and categories is often nonlinear,especially in the case of large changes in lighting,posture,etc.,which makes it difficult for linear models to capture nonlinear facial micro fea-tures,resulting in poor classification results.Therefore,a linear regression method for local block reconstruction is pro-posed.Samples after feature extraction are processed in blocks.The reconstruction coefficient is calculated for the block training sample set with more feature energy.By increasing the proportion of features with more feature energy in the linear reconstruction,the proportion of features with less feature energy is reduced to achieve the noise reduction effect.Then the reconstruction coefficient is applied to the overall training samples to obtain more similar reconstruction samples,and the maximum similarity method is used to determine the category of the test samples.Ex-periments on AR,CMU PIE,and other face databases show that the proposed method has better classification results.

Linear regressionChunking reconstructionClassifierFace recognition

刘海松、倪震

展开 >

南京晓庄学院,江苏 南京 211171

南京晓庄学院信息工程学院,江苏 南京 211171

线性回归 分块重构 分类器 人脸识别

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)