首页|三维虚拟场景图像多特征并行跟踪算法设计

三维虚拟场景图像多特征并行跟踪算法设计

扫码查看
由于三维虚拟场景图像存在较多特征,如纹理、形状等,且受视角变化和遮挡等因素的影响,使得图像特征提取难度较大。为此,提出一种三维虚拟场景图像多特征并行式跟踪算法。通过计算图像梯度,对三维虚拟场景图像去噪处理,并采用灰度共生矩阵算法,对图像灰度化处理,计算特征值。利用粒子滤波目标跟踪算法,融合多特征,根据引入加权融合规则,确定三维虚拟场景图像各个特征的最终位置,实现多特征并行式跟踪三维虚拟场景图像。通过仿真分析证明,采用所提算法可以准确跟踪三维虚拟场景图像多特征,具有较好的跟踪鲁棒性,且跟踪速度仅为 23。4 帧/秒。
Design of Multi-Feature Parallel Tracking Algorithm for 3D Virtual Scene Images
3D virtual scene images have many features and are affected by factors such as changes in viewpoint and occlusion,which makes it difficult to extract image features.To address this problem,a multi-feature parallel tracking algorithm for 3D virtual scene images was proposed.Firstly,the algorithm calculated the image gradient to denoise the image,and then used the gray co-occurrence matrix to perform gray-level processing,thus calculating feature values.Moreover,a particle filter tracking algorithm was used to fuse multiple features.Meanwhile,a weighted fusion rule was introduced to determine the final position of each feature of the 3D virtual image,thus achieving multi-feature parallel tracking.Simulation results show that the proposed algorithm can accurately track multiple features of 3D virtual scene images with good robustness,and the tracking speed is only 23.4 frames per second.

3D virtual scene imageMultiple featuresParallel trackingGray co-occurrence matrix

孔令箭、谢玮

展开 >

扬州大学,江苏 扬州 225009

三维虚拟场景图像 多特征 并行式跟踪 灰度共生矩阵

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)