首页|基于KMeans-LR的广告推荐应用

基于KMeans-LR的广告推荐应用

扫码查看
随着互联网在线广告业务的飞速发展,面对海量稀疏的广告点击日志数据,单一传统型预测方法由于性能较低,在海量广告数据推荐上表现不佳。这里提出一种基于聚类-逻辑回归(KMeans-LR)的广告推荐模型,该模型首先通过Softmax函数对初始数据各列进行概率归一化,构造处理各列值为分类概率值;然后输入至KMeans算法,通过超参控制分类数,进行自动归类;最终输入分段逻辑回归模型进行预测。在公开数据集上进行实验,相对于传统的FM与逻辑回归算法,有更好的性能表现。
Advertising Recommendation Application Based on KMeans-LR
With the rapid development of the Internet and online advertising business,in the face of massive and sparse advertising click log data,the single traditional prediction method has poor performance in massive advertising data recommendation due to its low performance.This paper proposes an advertising recommendation model based on cluster-logic regression(KMeans-LR).The model first normalizes the probability of each column of the initial data through the Softmax function,and constructs and processes each column value as the classification probability value.Then it is input into KMeans algorithm,and control the number of categories through hyper-parameters for automatic classification;Finally,it is input into the segmented logistic regression model for prediction.Compared with traditional FM and logistic regression algorithms,the experiment on open data sets has better performance.

Multidimensional clusteringLogical regressionFeature processingIntelligent recommendationAI and intelligent manufacturing

郭尚志、廖晓峰、赵庆、唐玉玲

展开 >

重庆大学计算机学院,重庆 400030

湖南科创信息技术股份有限公司,湖南 长沙 410205

多维聚类 逻辑回归 特征处理 智能推荐 人工智能与智能制造

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)